Talk bristol uk-nl_2013_v01_for_web

Post on 17-Dec-2014

123 views 0 download

description

Talk given at the UK-Netherlands meeting on strongly-correlated electrons, Bristol, August 2013.

Transcript of Talk bristol uk-nl_2013_v01_for_web

Thermodynamic signaturesof topological transitionsin nodal superconductors

arXiv:1302.2161

Bayan Mazidian1,2, Jorge Quintanilla2,3

James F. Annett1, Adrian D. Hillier2

1University of Bristol2ISIS Facility, STFC Rutherford Appleton Laboratory

3SEPnet and Hubbard Theory Consortium, University of Kent

UK-NL Condensed Matter Meeting, Bristol, UK, 2013(web version)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 1 / 69

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 4 / 69

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Power laws in nodal superconductors

Low-temperature specific heat of a superconductor gives information on thespectrum of low-lying excitations:

Fully gapped Point nodes Line nodesCv ∼ e−∆/T Cv ∼ T 3 Cv ∼ T 2

This simple idea has been around for a while.1

Widely used to fit experimental data on unconventional superconductors.2

1Anderson & Morel (1961), Leggett (1975)2Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 6 / 69

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].

A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].

A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 9 / 69

Line crossings

A different power law is expected at line crossings(e.g. d-wave pairing on a spherical Fermi surface):

crossingof linear line nodes

∆2k = I1

(kx||

2 − ky||

2)2

or I1kx||

2ky||

2

g(E ) =

E (1+2ln| L+√

E/I141

√E/I

141

|)

(2π)3√I1I2∼ E0.8

n = 1.8 (< 2 !!)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 10 / 69

Crossing of shallow line nodes

When shallow lines cross we get an even lower exponent:

crossingof shallow line nodes

∆2k = I1

(kx||

2 − ky||

2)4

or I1kx||

4ky||

4

g (E ) =

√E (1+2ln| L+E

14 /I

181

E14 /I

181

|)

(2π)3I14

1√

I2∼ E0.4

n = 1.4 *

* c.f. gapless excitations of a Fermi liquid: g (E ) = constant⇒ n = 1Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 11 / 69

Numerics

1

1.5

2

2.5

3

3.5

4

4.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

n

T / Tc

linear point nodeshallow point node

linear line nodecrossing of linear line nodes

shallow line nodecrossing of shallow line nodes

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 12 / 69

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 0

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 14 / 69

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 15 / 69

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 16 / 69

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Line

ar

node

s

Line

ar

node

sJorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 17 / 69

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 18 / 69

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 19 / 69

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Sha

llow

no

de

Sha

llow

no

de

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 20 / 69

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:

Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69

Li2PdxPt3−xB: Phase diagramTreat A and B as in dependent tuning parameters and study quasiparticlespectrum. We find a very rich phase diagram with topollogically-distinct phases:8

8C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 25 / 69

Li2PdxPt3−xB: Phase diagramWe find a very rich phase diagram with topollogically-distinct phases.9

9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 26 / 69

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 27 / 69

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 28 / 69

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 29 / 69

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 30 / 69

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 31 / 69

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 32 / 69

Li2PdxPt3−xB: predicted specific heat power-laws

334

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 33 / 69

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 34 / 69

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 35 / 69

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 36 / 69

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 37 / 69

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 40 / 69

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 40 / 69

Anomalous thermodynamic power laws in nodalsuperconductors

5 Additional details

Power laws in nodal superconductors

Let’s remember where this came from:

Cv = T(

dSdT

)=

12kBT 2 ∑

k

Ek − T dEkdT︸︷︷︸≈0

Ek sech2 Ek2kBT︸ ︷︷ ︸

≈4e−Ek /KBT

∼ T−2∫

dEg (E )E2e−E/kBT at low T

g (E ) ∼ En−1 ⇒ Cv ∼ T n∫

dεε2+n−1e−ε︸ ︷︷ ︸a number

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 42 / 69

Power laws in nodal superconductors

Ek =√

ε2k + ∆2

k

≈√

I2k2⊥ + ∆

(kx|| , k

y||

)2

on the Fermi surface k||

x

k||

y

k|_ ∆(k

||

x,k||

y)

Compute density of states:

g(E ) =∫ ∫ ∫

δ(Ek − E )dkx dky dkz

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 43 / 69

Shallow line nodes in pnictides

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 44 / 69

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εk I+ γk · σ

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk |)2 + (∆0 + |d(k)|)2; and

±√(εk − µ− |γk |)2 + (∆0 − |d(k)|)2

.

Take the most symmetric (A1) irreducible representation

d(k)/∆0 = A (X ,Y ,Z )− B(X(Y 2 + Z2) ,Y (Z2 + X2) ,Z (X2 + Y 2))

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 45 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC) • Simplest noncentrosymmetric system: a surface.

• Rashba term in the Hamiltonian:

• In general, form & strength of SOC depend on details of electronic structure.

• Split Fermi surface:

spin for

spin for

kk

kkk

Gor'kov & Rashba, PRL, 87, 037004 (2001)

• There’s a zoo of phenomenologies for noncentrosymmetric superconductors:

•Triplet: CePt3Si [1]

•Singlet (conventional): Li2Pd3B [2], BaPtSi3 [3], Re3W [4]

•Singlet-triplet admixture: Li2Pt3B [2]

[1] Bauer et al. PRL (2004); [2] Yuan et al PRL (2006); [3] Batkova et al. JPCM (2010); [4] Zuev et al. PRB (‘07)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 46 / 69

LaNiC2 – a weakly-correlated, paramagnetic superconductor?

Tc=2.7 K

W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)

ΔC/TC=1.26 (BCS: 1.43)

specific heat susceptibility

0 = 6.5 mJ/mol K2

c 0 = 22.2 10-6 emu/mol

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 47 / 69

ISIS

muSR

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 48 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Zero field muon spin relaxation

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 49 / 69

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4

s ~

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 50 / 69

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry

[ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]

(longitudinal)

Timescale:

> 10-4

s ~

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 51 / 69

LaNiC2 is a non-ceontrsymmetric superconductor

Neutron diffraction

30 40 50 60 70 800

5000

10000

15000

20000

25000

30000

35000

Inte

nsity (

arb

un

its)

2 o

Orthorhombic Amm2 C2v

a=3.96 Å

b=4.58 Å

c=6.20 Å

Data from

D1B @ ILL

Note no inversion centre.

C.f. CePt3Si

(1), Li

2Pt

3B & Li

2Pd

3B

(2), ...

(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 52 / 69

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 53 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 54 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 55 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 56 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

180o

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 57 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v

Symmetries and

their characters

Sample basis

functions

Irreducible

representation

E C2

v ’

v Even Odd

A1 1 1 1 1 1 Z

A2 1 1 -1 -1 XY XYZ

B1 1 -1 1 -1 XZ X

B2 1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 58 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v

Symmetries and

their characters

Sample basis

functions

Irreducible

representation

E C2

v ’

v Even Odd

A1 1 1 1 1 1 Z

A2 1 1 -1 -1 XY XYZ

B1 1 -1 1 -1 XZ X

B2 1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

These must be combined with the singlet and triplet representations of SO(3).

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 59 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 60 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 61 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 62 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Non-unitary d x d* ≠ 0

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 63 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Non-unitary d x d* ≠ 0

breaks only SO(3) x U(1) x T

Possible order parameters

* C.f. Li2Pd3B & Li2Pt3B, H. Q. Yuan et al. PRL’06

*

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 64 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

The A1 phase of liquid 3He.

Non-unitary pairing

0

00or

00

C.f.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 65 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t

Gap function,

singlet component

Gap function,

triplet component

A1

(k) = A d(k) = (Bky,Ck

x,Dk

xk

yk

z)

A2

(k) = Akxk

Y d(k) = (Bk

x,Ck

y,Dk

z)

B1

(k) = AkXk

Z d(k) = (Bk

xk

yk

z,Ck

z,Dk

y)

B2

(k) = AkYk

Z d(k) = (Bk

z, Ck

xk

yk

z,Dk

x)

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 66 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t

Gap function,

singlet component

Gap function,

triplet component

A1

(k) = A d(k) = (Bky,Ck

x,Dk

xk

yk

z)

A2

(k) = Akxk

Y d(k) = (Bk

x,Ck

y,Dk

z)

B1

(k) = AkXk

Z d(k) = (Bk

xk

yk

z,Ck

z,Dk

y)

B2

(k) = AkYk

Z d(k) = (Bk

z, Ck

xk

yk

z,Dk

x)

The role of spin-orbit coupling (SOC)

None of these break time-reversal symmetry!

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 67 / 69

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic instabilities: a complex relationship

singlet

Pairing

instabilities

non-unitary

triplet

pairing

instabilities

unitary

triplet

pairing

instabilities

A1 B1

3B1(b) 3B2(b)

1A1 1A2

3A1(a) 3A2(a)

A2 B2

1B1 1B2

3B1(a) 3B2(a)

3A1(b) 3A2(b)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 68 / 69

Li2PdxPt3−xB:order parameter

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 69 / 69