T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau

Post on 19-Feb-2016

29 views 0 download

Tags:

description

Strong dipolar effects in a Chromium BEC A quantum ferrofluid. T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi – June 6th 2007. Interacting quantum systems in AMO physics. - PowerPoint PPT Presentation

Transcript of T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau

T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori,A. Griesmaier, S. Giovanazzi and T. Pfau

5. Physikalisches Institut, Universität Stuttgart

Assisi – June 6th 2007

Strong dipolar effects in a Chromium BEC A quantum ferrofluid

Interacting quantum systems in AMO physics

Long range Isotropic

Short rangeIsotropic

Coulomb interactionDipole-dipole interactionContact interaction

MIT Innsbruck

Long range - Anisotropic

New physics in dipolar quantum gases

Dipole-dipole interactions are:

- anisotropic

- instability- modified dispersion relation (roton)- new equilibrium shapes (biconcave BEC)

- long range

- new quantum phases in optical lattices- supersolid phase

pancake

• ChromiumHow to get a Chromium BEC?Dipolar expansion

• Demagnetization cooling

• Strong dipolar effects in a Cr BEC • Outlook

Outline – BEC with MDDI

I. Chromium

Yb

5 1[ ]3 4Cr Ar d s

Ground state 7S3

Magnetic dipole moment = 6B.

Way to BEC

• Continously loaded Ioffe Pritchard trap (CLIP-trap)J. Stuhler et al. PRA 64, 031405 (2001); P. O. Schmidt et

al. J. Opt. B 5, S170 (2003)

• Doppler cooling in compressed IP-trapP. O. Schmidt, et al., J. Opt. Soc. Am. B 20, 5 (2003)

>108 atoms in the ground state phase space density ~10-7

• Rf-evaporation

• Stop by dipolar relaxation! No cold & dense cloud (no BEC) in MT!S. Hensler et al., Appl. Phys. B 77, 765 (2003)

+E +2Em = 3m = 2m = 1

Transfer to optical dipole trap

Advantages:• all magnetic substates are trapped (no dip. relaxation)• operation at arbitrary magnetic offset field (Feshbach resonance)

optical pumping in mj=-3

mj= -3 mj= +37S3

7P3

Forced evaporation in ODT

BEC with up to 100.000 atoms

horizontal beam

verticalbeam

Dipolar expansion of a BEC

Elongation along magnetization direction!

Density

Mean-field potentialdue to MDDI

PRL 95, 150406 (2005).PRA 74, 013621 (2006).

First Observation of mechanical effect of a homogenous magnetic field on a gas

II. Demagnetization cooling

Why another cooling scheme ?????

► doppler cooling techniqueslimited by reabsorption

► evaporative coolingthrow away 99 % of your atoms

► demagnetization cooling

Kastler, Journal de physique et le radium 11, 255 (1950).Cirac, Lewenstein, Phys Rey A 52, 6 (1995).

basic idea

1. Initialization 3. Optical pumping2. Lowering B-field

Needed:1. Suitable level scheme2. Strong enough coupling

31 S

mj= -3 mj= +37S3

7P3

-Em = -1m = -2m = -3

T0? Solid vs.gas

1f i

i f

T cT c

decr

ease

of B

-fie

ld

solid

kB

spins phonons

gas

kB

kBkB

kB

kBkB

kB

34

f i

i f

T cT c

spins phonons

But we can pump back !

Results: Single step

M. Fattori et.al. Nature Physics 2 , 765 (2006)

1G

50mG

Experimental challenges

bad polarization due to(a) badly polarized light(b) transverse magnetic fields

(a) polarization quality 1/1000(b) transverse fields

below 5mG

Results: Optimized ramps

ln 11ln

dd N

Atoms with large magnetic dipole moment .

Chromium: 6B.

Small dd… but a tunableBEC !!!

III. Strong dipolar effects in a BEC

Strength of the dipole-dipole interaction:

Heteronuclear molecules(electric dipole moment d )

Large d (~1 Debye):

No BEC yet Griesmaier et.al. PRL 97, 250402 (2006) Griesmaier et.al. PRL 94, 160401 (2005)

Tuning a with a Feshbach resonance

scattering length a can be tuned with B-field !

V(R)

collision with molecular potential V(R):

Ec

a ! describes scattering @ low T

V’(R)

V’(R) with Ms’ ≠ Ms + B-field

Vc

a is modified !

+ coupling:

[J. Werner et al., PRL 94, 183201, (2005)]

Broadest resonance at 589.1 G ( = 1.7 G)Field stability better than 10-4 required!

Tuning a with a Feshbach resonance

Tuning the scattering lengthWithout MDDI: measure a through the released energy a ~ R5 / N

Correct for the MDDI effects (hydrodynamic theory, TF regime).

Aspect ratio vs. dd

Theory without any adjustable parameter !!!

Dipolar expansion with tunable εdd

εdd=0.16

„εdd=0“

εdd=0.75

εdd=0.5

εdd=0.16

„εdd=0“„εdd=0“

Stuhler et.al. PRL 95 , 150406 (2005)

Lahaye et.al. Nature in press

1 / e lifetime of the condensate:

Limits: inelastic losses

-15 -10 -5 0 5 10 1510

100

1000

Li

fetim

e [m

s]

Magnetic field B-B0 [G]

Use of a Feshbach resonance

Summary and Outlook

I. Dipole-dipole interaction & ultracold Cr atoms

II. Demagnetization cooling

III. New regime of strong dipolar interactions New physics

1D lattice:A stack of pancakes

Thanks for your attention!

T. Lahaye B. Fröhlich M. Fattori T. Koch T. Pfau A. Griesmaier J. Metz

Theory:

S. Giovanazzi

http://www.pi5.uni-stuttgart.de/

SFB/TR 21 SPP1116

The Cr team:

Summary and Outlook

• One-dimensional optical lattice: a stack of pancake traps.

Ø stabilize the BEC with respect to dipolar collapse?

Ø study spectrum of excitations?

Ø (more) stable molecules?

• By tuning a we enter a new regime

Ø stabilize the BEC with respect to dipolar collapse?

Ø study spectrum of excitations?

Ø (more) stable molecules?

title