Synchronization in Modular Multilayer Networksreu.dimacs.rutgers.edu/~kaylac/Presentation2.pdf ·...

Post on 04-Jun-2020

4 views 0 download

Transcript of Synchronization in Modular Multilayer Networksreu.dimacs.rutgers.edu/~kaylac/Presentation2.pdf ·...

Synchronization in Modular Multilayer Networks2017 DIMACS REU

Kayla CummingsPomona College

Mentors: Dr. L. Gallos, Dr. R. WrightDIMACS, Rutgers University

July 14, 2017

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Outline

1 Kuramoto model

2 Modular networks

3 Two-layer networks

4 Future steps

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Simple Kuramoto Model

Can be solved directly:

dθidt

= ωi +K

N

N∑j=1

sin(θj − θi ) (i = 1, . . . ,N)

dθidt

= ωi + Kr sin(φ− θi ) (i = 1, . . . ,N)

with re iφ =1

N

N∑j=1

e iθj

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Simple Kuramoto Model

Figure 1: Visualization of Phase Locking for Different Coupling Strengths

“Kuramoto model,” Wikipedia. Web. Accessed 2 June 2017. https://en.wikipedia.org/wiki/Kuramoto model

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Modified Kuramoto Model

Must be solved analytically:

dθidt

= ωi +K

deg(i)

N∑j=1

aij sin(θj − θi )

θi (t + h)← θi (t) + h ·(ωi +

K

deg(i)

N∑j=1

aij sin(θj − θi ))

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Modular networks

Figure 2: α = 30,m = 3,N = 150

α: modularity strengthm: number of modules

ktotal = 4: average node degree↓

kinter , kintra: average intermodularand intramodular degrees

ktotal = kinter + kintra

kinterkintra

m − 1

Shekhtman, Shai, Havlin. New Journal of Physics 17.

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Visualizing final phases: modularity strength (m = 20)

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Heat maps: modularity strength

ktotal = 4, m = 20, N ≈ 10, 000

Figure 3: Left: global synchronization. Right: modular synchronization.

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Heat maps: modularity strength

ktotal = 4, m = 20, N ≈ 10, 000

Figure 4: Left: global synchronization. Right: modular synchronization.

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Visualizing final phases: number of modules (α = 1000)

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Heat maps: number of modules

ktotal = 4, α = 1000,N ≈ 10, 000

Figure 5: Left: global synchronization. Right: modular synchronization.

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Heat maps: number of modules

ktotal = 4, α = 1000,N ≈ 10, 000

Figure 6: Left: global synchronization. Right: modular synchronization.

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Phase diagram sketches: modularity and synchronization

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Conclusions

These phase diagrams show us that module strength andquantity can severely impair global coherence in modular

networks after synchronization. However, after a relativelystable coupling strength threshold, order still exists within

modules.

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Two-layer modular networks

Modules ←→ Layers

Next: heat maps showing effects of interlayer connectivity andinterlayer coupling strength on global and modular synchronization

in each layer and the entire network

Radicchi, F. “Driving Interconnected Networks to Supercriticality.” Phys. Rev. X 4, 021014 (2014). 22 April 2014.

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Next steps

1 Finalize heat maps and phase diagrams for two-layer modularnetworks.

2 Learn about cool combinatorial mathematics in Prague!

3 Investigate optimal modular topology for synchronization intwo-layer networks.

Kayla Cummings Gallos, Wright, DIMACS

Synchronization

Acknowledgements

Thank you for listening!

Thank you to Drs. Gallos and Wright for your mentorship.

Work supported by NSF grants CCF-1559855 (DIMACS REU)and CNS-1646856 (EAGER initiative).

Kayla Cummings Gallos, Wright, DIMACS

Synchronization