Sustainable Bioenergy and Biofuels: The Success Story of...

Post on 06-Jun-2020

1 views 0 download

Transcript of Sustainable Bioenergy and Biofuels: The Success Story of...

Sustainable Bioenergy and Biofuels: The Success Story of Brazil

Manoel Regis L. V. LealCTBE – Brazilian Bioethanol Science and technology 

Laboratory

Bangkok, Thailand – June 05, 2013

Renewable Energy Asia 2013

Contents

BiodieselBioelectricityBioethanol

•Brief history•Technology•Production model•Sustainability•Certification•GHG emissions• Land use issues

Key to Success With Bioenergy

A good combination of:

Driving forces Technology development and use Public policies Capacity building Proper choice of feedstock Size and tradition of the agriculture sector

Biodiesel, Bioelectricity and Bioethanol Three Different Stories in Brazil

Different driving forces, past experience and legal frameworkCompetitiveness in face of conventional energy alternativesGovernment interestExisting experience and technology

Biodiesel 

Biodiesel• Tentatives in the 1980s without success• Launching of the Biodiesel Production and Use National Program (PNPB) targeting B5 – Legal Framework established in 2004

• Driving forces: decrease diesel imports and support family agriculture

• Today: B5 countrywide, 2.8 billion liter production and 7.7 billion installed capacity

• Sales through auctions organized by government with a reference price

• Needs subsidies

Biodiesel – Support to Family Agriculture

The PNPB introduced rules to favor family agriculture providing technical assistance and tax reduction for biodiesel produced from feedstocks derived from family agriculture and poor regions

Tax reduction (Social Seal)• Family agriculture in North, Northeast and Semiarid Regions: castor 

beans and palm 100% social tax reduction; in other regions 68% social tax reduction

• Large scale agriculture in North, Northeast and Semiarid Regions: castor beans and palm 32% social tax reduction; in other regions there is no tax reduction 

• In 2010 there were more that 100,000 qualified family agriculture units

Biodiesel Feedstocks

Source: EPE, 2012

Biodiesel Outlook

Source: EPE. 2012

Bioelectricity

There are two types of markets for electricity: the regulated market(ACR) and free market (ACL)ACR: E.E. sold though auctions organized by government with reference prices (app. 80% of market)ACL: E.E. sold by direct negotiation between supplier and userProblems for sugarcane E.E.: competition with wind power and difficulties and high costs of interconnection with the grid

Bioenergy Generation Profile in 2008

Biofuel E.E. (GWh)

Capacity(MW)

Tarrif1(R$/MWh)

Wood wastes 460 130 101.35Sugarcane residues 8,357 2,845 93.77

Rice straw 264 10 103.20Black liquor2 5,199 696 101.35

Biogas ‐ 0.03 169.08

Total 14,279 3,681 ‐

Source: MME, COGENNotes:1. PROINFA tariffs referred to March 2004  (R$ 1.70/US$); today all types o

bioelectricity dispute the market with the same reference price. PROINFA is a National Program aimed at supporting renewable energy in power generation

2.     Residue from pulp/paper industry

Bioelectricity Potential

The potential is mainly in the surplus electricity from the sugarcane mills

New mills are being built with state of the art energy sector and several old mills are retrofitting the energy sector

In 2009 111 mills (28% of the 393) were selling EE; those mills crushed 47% of the total cane

Competition from wind power is slowing down the expansion

Interconnection with the grid needs be discussed

The Mill E.E. Generation Profile

Units selling EE Units not selling EE TotalNo. of Units 111 282 393

% of units 28 72 100Milled cane (Mtc/a) 283 320 603% of milled cane 47 53 100Avg mill capacity (Mtc/a) 2,550 1,134 1,534

Installed capacity (MW) 3,844 1,731 5,575EE generation (GWh/a) 13,472 5,648 19,120EE sale (GWh/a) 7,318 ‐ 7,318Specific EE sale (kWh/tc) 26 ‐ ‐

Source: CONAB, 2010

Mills Surplus Power Generation Potential

Source: EPE, 2012

Note: using bagasse only

Surplus Power Potential VS Contracted Energy

Source: EPE, 2012

Note: Using bagasse only

Future of Surplus EE Generation in the Mills

There is a reasonable probability that the potential do not materializeMain problems are lack of public policies to solve the competitiveness and interconnection problemsAlthough the present situation is the mills genera EE only during the crushing season (7 months) the period is very dry and coincides with low levels in the hydro plants reservoirs

Ethanol ‐ A Brief History

1905‐1920     Trials to develop ethanol fuel applications1920s              Trials continued and government support the research in ethanol in Otto cycle      

engines1931                Government mandated 5% ethanol blend in the gasoline1933                Creation of Sugar and Alcohol Institute (IAA)to control the sugarcane sector1940‐1945     Increased use of ethanol fuel use due to oil supply import problems (WWII)1945‐1975     Ethanol fuel use on an as available base (5‐7% blend, mostly)1969‐1970     Creation of the two main sugarcane breeding programs (SP and RB varieties)1975                Launching of the National Alcohol Program (Proalcool)1975‐1979     Fast growth of ethanol production in distilleries annexed to existing mills1979                Auto industry starts to offer neat ethanol cars; CTC is created1980‐1985     Building of autonomous distilleries (cane juice) – ethanol production increase1990‐2000     Deregulation of the sugarcane sector – free market operation, no subsidies1990                Extinction of IAA – sector under self control2003                Introduction of the Flexible Fuel Vehicles2005                New fast expansion phase2008                Financial crisis

Ethanol Car ‐ 1925

Sugarcane, Sugar and Ethanol Production

Source: CTBE based on information from UNICA, UDOP, MAPA, ALCOPAR

Main Technology Improvements

Agriculture• Breeding: four programs, with two dominating with around 90% of planted area; 

varieties RB (Planalsucar/Ridesa) and SP (CTC) are introduced in the canefields;GM sugarcane varieties started to be developed in 1994

• Agriculture management: full integration with factory, TI, fleet optimization, cane transport improvements, residues application, entomology and biocontrol, satellite images, benchmarking

• Mechanization: harvesting and plating, GPS/automatic pilot

Industry• Gains in efficiency, yields and scale• Automation• Benchmarking

Energy• From an energy buyer (EE and firewood) to an energy seller (EE and bagasse)• Increase in steam pressure : 15 bar to 21 bar to 67/100 bar• Turbo‐generators from single stage/back pressure to multi stage condensing/extraction• Use of trash (incipient)

Increase in Availability of Commercial Varieties

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

`84 `85 `86 `87 `88 `89 `90 `91 `92 `93 `94 `95 `96 `97 `98 `99 `00 `01 `02 `03

NA56-79 SP70-1143

RB72454

SP71-1406

SP71-6163

CB45-3

SP81-3250

SP79-1011

RB835486

RB855536

SP80-1842

SP80-1816

RB785148IAC52-150

CB41-76

Source: CTC

Technology Improvement ‐ Industry

1975 2005Milling capacity‐ 6x78” tandem (tc/day)

5,500 14,000

Fermentation time (h) 16 8

Extraction efficiency (%) 93 97

Fermentation efficiency(%) 82 91

Distillation efficiency (%) 98 99.5

Distillery global efficiency (%) 66 86

Boiler efficiency (%) 66 88

Source: DEDINI, CTC

Global Improvements

66%

36%

125%

-69%

42%

135%

-100%

-50%

0%

50%

100%

150%

1975 1980 1985 1990 1995 2000 2005 2008

Ano

Efficiency improvements and cost reductions in the sugarcane sector from 1975 to 2008

Sugarcane yield (from 46.8 to 77.5 ton/ha) Ethanol yield (from 59.2 to 80.4 L/ton of sugarcane)

Ethanol yield (from 2,772 to 6,234 L/ha) Sugarcane cost (from 44.4 to 13.8 US$/ton)

Ethanol cost(from 1.20 to 0.38 US$/L) Sugar yield (from 99.9 to 142.0 kg/ton of sugarcane)

Sugar yield (from 4.7 to 11.0 ton/ha)

Production Model

In the beginning of Proalcool: distilleries were annexed to existing mills In the Proalcool stagnation phase (1986 – 20010) sugar factories were 

annexed to the autonomous distilleries New expansion phase (from 2005): both autonomous distilleries and 

sugar/ethanol integrated plants were installed After the power sector deregulation there has been and increasing 

modernization of the old mills to generate surplus electricity and most of the new mills already come with the state of the art energy section

• There has been a change from a food industry to a food and power industry

• In 2009, there were 111 mills, out of 393, selling surplus electricity (26 kWh/tc, avg) and they represented 47% of the crushed cane

Sustainability – The Challenges

It is a highly subjective concept There is a significant quantity of criteria and indicators that are 

dependent on the local conditions Methodologies are still in developing stage Lack of reliable and traceable data in a level of spatial and 

temporal disaggregation  adequate for the case under study Too many certification systems available Different requirements from different  countries

Biofuels Sustainability Certification Initiatives

Main Biofuels Certification Systems

Roundtable on Sustainable Biofuels (RSB) Global Bioenergy Partnership (GBEP) International Sustainability and Carbon Certification (ISCC) BONSUCRO: by the end of 2012 there were 28 mills certified, 

two in Australia and 26 in Brazil

GBEP Sustainability Pillars

GBEP Indicators

Main International Legislations

Renewable Energy Directive (RED): EU• Minimum 10% renewable energy in transport by 2020 • Threshold values for GHG emission reduction: 35% in 2013, 50% in 2017 

and 60% in 2018, including LUC/ILUC emissions• No cropping in areas that are protected, with high carbon stock or with a 

high biodiversity value 

Renewable Fuel Standard (RFS2): USA• Target of 136 billion L (36 billion gallons) in 2022• Threshold values for GHG emission reduction of 20% for renewable 

fuels, 50% for advanced biofuels, 60% for 2G biofuels• No cropping in areas that are protected, with high carbon stock or with a 

high biodiversity value 

Some Key Points of Sustainability

GHG emission reduction Displacement of fossil fuels Natural resources demand (land, water) Impacts on soil and water quality Production costs Land use change (LUC) Impacts on food production Social impacts Impacts on biodiversity

All these items bear a strong dependence on land demand, thus on the biofuel feedstock productivity

Brazilian Ethanol Energy Balance and GHG LCA

Source: Macedo et al., 2008

Note: LUC and ILUC derived emissions are not included

Energy Balance and LCA GHG Emissions

The agriculture area is responsible for 90% of fossil energy consumption and 94% of GHG emissions

Soil and straw burning GHG emissions (non‐CO2) represent around 55% of agricultural area emissions

Agricultural operations consume 40% of fossil energy related to cane production

More than 2/3 of GHG emissions depend solely on cultivated area

LUC and ILUC emissions also depend only on the cropped area, and they can have a significant impact on the total LCA GHG emissions

US EPA – 1st Round

Source: EPA, 2010

US EPA – 2nd Round

Source: EPA, 2011

RED Default Values

Biofuel Production Pathway

Typical GHG Emission Saving

(%)

Default GHGEmission Saving

(%)

Wheat ethanol (lignite in CHP plant)

32 16

Wheat ethanol (NG in CHP) 53 47

Corn ethanol, Community produced (NG in CHP)

56 49

Sugar beet ethanol 61 52

Sugarcane ethanol 71 71

Farmed wood ethanol (2G) 76 70

Farmed wood Fischer‐Tropsch diesel (2G)

93 93

Source: Directive 2009/28/EC (RED)Note: ILUC derived emissions not included

ILUC Derived Emissions Simulation

Biofuel ILUC Derived Emissions(gCO2e/MJ)

Net Emission Reduction(%)1

Ethanol‐sugar beet  13 ‐36

Ethanol‐sugarcane 132 ‐56

Ethanol‐corn 12 ‐35

Ethanol‐wheat 12 ‐7

Source: EC, 2012

Notes:1Negative values represent emission reduction with respect to displaced fossil fuels.2 GHG emissions in LCA= 20.6 gCO2e/MJ (Macedo et al. 2008)

Only sugarcane ethanol will meet the minimum threshold values of RED after 2017

Sugarcane Agroecological Zoning

Notes:1. 64.5 Mha of land available for sugarcane

cultivation with low impacts2. This means that 92.5 %  of Brazilian territory

is not available for sugarcane cultivation

Sugarcane Expansion: 2003 to 2012

Source: CTC

Brazilian GHG Emissions By Sector (2005)

Sector GWP2005 (Mt CO2e) Participation (%)

Energy 328.8 15.0Industrial processes 77.9 3.6Agriculture 415.8 18.9

LULUCF 1,329.1 60.6Waste treatment 41.0 1.9Total 2,194.6 100.0

Source: Ministry of Science, Technology and Innovation

Dynamics of Sugarcane Expansion in CS Brazil (LUC)

Agricultural Area Outlook

Actions to Reduce Brazil GHG Emissions

• Deforestation: establish targets, monitor and enforce the law

• LU: AEZ, cattle/forestry/agricultural integration• Energy: maintain or improve the participation of renewable energies in the energy matrix

• Transport: increase the use of biofuels and improve vehicle efficiency

Thank you for your attention!

regis.leal@bioetanol.org.br