Summer Event @ Colruyt about Renewables & Hydrogen

Post on 24-Jan-2018

184 views 0 download

Transcript of Summer Event @ Colruyt about Renewables & Hydrogen

Cluster TechnologyofWalloniaEnergy,EnvironmentandsustainableDevelopment

28June2016@Halle

Event @ Colruyt about Renewables

& Hydrogen

CONFERENCES• TWEED&Agoria &Hosts:Introduction

• Colruyt:VisionofColruytaboutRenewables&HydrogenbyJonasCautaerts,ColruytGroup

• Waterstofnet :RoadmapforH2MobilityBelgiumbyWouterVanderlaek,Waterstofnet

• "Power-To-Hydrogen :Howbig can/should we get ? »

byProf.JorisProost,UCL• Presentation oftheinstallation@Halle

byDenisThomas,Hydrogenics

Hydrogen @ Colruyt Group

28th June 2016 jonas.cautaerts@colruytgroup.com

TWEED-AGORIA Event

1 Colruyt Group

History

TWEED-AGORIA Event

Bakery 1900-1930

Wholesale 1930-1955

Discounter 1955-1995

Retail Group 1995-Current

Mission

TWEED-AGORIA Event

Who?

TWEED-AGORIA Event

234 98

11

67

39 17

2

214 270

112

TWEED-AGORIA Event

Sustainability

simplysustainable.com

People

Environment Products

2 Environment

Colruyt Group and energy

Energy production (wind, solar and CHP)

Energy consumption (behaviour and infrastructure)

Flexible supply and demand management

Renewable energy

11 windturbines (febr 2016)

25,1 MW

14.500 ton CO2 reductie

43 locaties

6,8 MWp

1788 ton CO2

reductie

1 warmtekrach-

koppelings- installatie

926 kW

thermisch

889 kW

elektrisch

545 ton CO2 reductie

Alternative fuels

DATS 24 commits to Hydrogen stations

Zero-emission fuels of the future

CNG = transition fuel

Transport of goods

Silent delivery

Sustainable fleet

2012 - 2015: Test (11 units)

2016 - … : roll out (200)

Logistics

TWEED-AGORIA Event

3500 Fillings 2650 kg Nov ‘11 – Jun ‘16

- PEM electrolysis (2,7kg/u) - Storage: 46 kg - Fuel Cell (120kW)

- Alkaline electrolysis (2,7kg/u) - Compressor - Storage: 39 kg

Hydrogen @ Colruyt Group

Hydrogen activities + ambitions

•Don Quichote (FCH-JU)

• CertifHy (FCH-JU)

• Public hydrogen station

•Hydrogen material handling vehicles + indoor dispensing

•Heavy-duty transport with hydrogen range extender

TWEED-AGORIA Event

H2-Mobility Belgium

Wouter Vanderlaek

Mobile: 0031(0)620943104 / 0032(0)492318403

june 28, 2016

Cofinanced byFlemish Government

Agenda

1. WaterstofNet

2. Projects

3. H2Mobility Belgium

WaterstofNet

�Non-profit, founded 2009�Focus on hydrogen projects(mobility and energy storage)

�Developing, realising, coordinating/managing, communication & dissemination

�Partnering with regionalcompanies, governments, knowledge institutes

Projects

1MW fuel cell plant (Solvay)� 1MW (1,6MW Piek) electricity coupled

with 6kV Net� 168 stacks� 12 600 cells (75/stack)� 70 kg hydrogen/hour

Realisations Hydrogen region 1.0

Hydrogen refueling station Halle� Operational: since 2012� Location: Halle, Belgium � Production: renewable hydrogen

from sun & wind, electrolyses 30 Nm3/h or 2,7 kg/hr

� Pressure level: 350 bar� Storage: 55 kg� Application: forklift trucks

Realisations Hydrogen region 1.0

Hydrogen refueling station Helmond� Operational: since 2013� Location: Helmond The Netherlands� Production: renewable hydrogen,

electrolyses 30 Nm3/h or 2,7 kg/hr� Pressure level: 350 & 700 bar� Storage: 50 kg� Application: passenger vehicles, buses,

garbage truck� Prestaties (April 2016):

� 500 x getankt (80x bus/vuilniswagen & 420x personenvoertuigen)

� 1.750 kg getankt� 95-97% beschikbaarheid

Realisations Hydrogen region 1.0

Bus with fuel cell range extender� Bus VDL, Citea / 12 meter� Mileage ca 300 km� Driveline: Fuel cell with battery

system � Hydrogen storage 25 kg

Realisations Hydrogen region 1.0

Garbage truck with fuel cellrange extender� Testplatform DAF CF 75 FA� Driveline fuel cell Nedstack (32

kW) � Li-ion battery 144 kWh� Pressure level 350 bar� Efficiency 6-9 kg /100 km� Mileage 360 km

Realisations Hydrogen region 1.0

2 boats with fuel cellHYDROGEN XPERIANCE� Vaartuig: Vlet 700, 7,26 m x 2,30 m x

0,60 m (L x B x D)� Ontwikkelde drijflijn: PEM-brandstofcel

(1,2 – 2 kW), accu’s (48 V, 230 Ah)� Opslag waterstof: 200 bar, 4 flessen

van 30 liter (watervolume)WECO 635� Vaartuig: spitgat sloep, 6,35 m x 2,30

m x 0,55 m (L x B x D)� Klassieke drijflijn: 11 kW diesel met

2,2 elektromotor met batterij (48 V, 55 Ah)

� Ontwikkelde drijflijn: PEM-brandstofcel (2 – 5 kW)

� Opslag waterstof: 350 bar

Realisations Hydrogen region 1.0

Power to mobility/power

Realisation project ‘Don Quichote’

9 march 2016

July 2016

august 2016september 2016

� Benchmark alkalyc and PEM-elektrolyse, � Demonstration of hydrogen in logistic applications

and fuel cell (120 kW) � Cost: € 4,946,134� Funding FCH JU: € 2,954,846� Partners: WaterstofNet vzw, Etablissement

Franz Colruyt NV, TUV Rheinland, JRC,Thinkstep, Icelandic New Energy Ltd, FAST

3EMOTION

� Objective: 27 FCB & 3 new Hydrogen Refuelling Stations

� Cost: € 41,891,578.80� Funding FCH JU: € 14,999,983.00� Partners: WaterstofNet vzw, VAN

HOOL N.V, AIR LIQUIDE ADVANCED TECHNOLOGIES SA,

Spin-off

Life and Grab Hy!

� Demonstration of two new second generation garbage trucks with fuel cell within 10 EU cities

� Two different types

Spin-off

H2ME

� Objective: develop early networks of refuelling stations to prepare market for commercial introduction of innovative zero emission vehicles over coming years.

� Role Wnet: communication of results to Benelux stakeholders

Spin-off

Roadmap power-to-gas

� Funding: Flemish region� Partners: Hydrogenics, Umicore,

Colruyt Group, Eandis, Fluxys, Elia, Sustesco, WaterstofNet

Spin-off

Hydrogen region 2.0

�H2 refueling stations (Breda, Antwerp)�Indoor refueling forklift trucks (Halle)�Mobile refueler 350 bar�Upgrade H2 station (Helmond)�Demo forklift trucks �Demo heavy duty truck (40 ton)�Demo garbage truck

�Total costs: €14 milj.�Private contribution: €6.2 milj

Partners

Cofinanced by:

H2-Mobility Belgium

Objective

�To develop a national implementation plan (NIP)

�To prepare the Belgium market for the introduction of FCEV (buses and passenger vehicles)

Approach

�Desk study (existing plans and targets neighboring countries, analyzingTEN-T road networks with Belgium cities and bus depots etc.)

�Using own experience (operator of 2 hydrogen refueling stations, experience within several hydrogen projects)

�Many meetings (industrial stakeholders, governments etc. )�Calculations�Extensive involvement stakeholders reviewing executive summary

TEN-T core/compreh. network

North Sea Baltic Corridor Rhine Alpine Corridor North Sea-Mediterranean Corridor

Neighboring countries

Targets for Belgium

Assumptions�Growth rate neigbouringcountries

�First stations in bigger cities, close to fleets and were possible along TEN-T network

Targets for Belgium

Period FCEV Buses Hydrogen(ton)

Electricity (TWh)

2015-2020 1.000 50 650 0,04

2020-2025 7.500 250 3.875 0,22

2025-2030 30.000 500 11.500 0,67

2030-2050 1.375.000 1.500 355.750 20,63

Market phasesTarget Core

challengeObjectives Result of phase Lead investors

market preparation (2015-2020)

HRS: 25FCEV: 1.000Buses: 50

Overcomeuncertainty

Build HRS network to sufficient coverage

Enable sale or leasing of early commercial vehicles

Monitor reliability of network

Enough demand and/or projected demand

sufficient early infrastructure coverage

GovernmentStrategic investors

early market introduction (2020-2025)

HRS:75FCEV:7.500Buses: 150

Maintain investment interest

Upgrade existing and build new stations based upon FCEV projections

Monitor reliability of network

Critically risk and uncertainty have been removed

Better understanding on FCEV adoption, station deployment timelines and capability

GovernmentStrategic & equity investors

full market introduction (2025-2030)

HRS:150FCEV:30.000Buses: 500

Enabling transition to and competitive private market

Build new stations

Downgrade governmental support

Market takes over development of network

Equity investors Some government support

Recommendations to government

�Include hydrogen refueling stations in the Belgium national/regional policy framework

�Take facilitating role to create confidence in the market (synchronized ramp-up, investment plan, implementation/coordination team, stimulate innovative demonstration projects)

�Align and stimulate developments in hydrogen mobility with other policy plans/targets

Recommendations to government

�Develop and introduce incentives to stimulate fuel cell electric vehicle purchase and driving, also for niche fleets

�Develop and introduce incentives to stimulate investment and operation of hydrogen refueling stations (first mover advantage, tendering, minimum share 0-emission in fleets, financing, increase strategic value of network)

�Implement binding targets to reach ‘green’ hydrogen mobility market�Cooperate with neighboring Benelux-countries�Develop practical guidelines for hydrogen refueling stations and organize workshops�Start discussions around optimizing regulations, inspections, permitting etc

Thank you for your attention

Université catholique de Louvain (UCL)Division of Materials and Process Engineering

Power-to-Hydrogen : How big can (should) we get (by 2020) ?

Prof. dr. ir. Joris Proost

TWeeD-Agoria Summer Event on Renewables & Hydrogen Colruyt Halle, 28/06/2016

1. the context

2. the technological challenge(s)

3. the WallonHY project

4. the Belgian perspectives (by 2020)

Hydrogen (H2) : « the Holy Trinity »

“ Oui, mes amis, je crois que l’eau sera un jour employée comme combustible, que l’hydrogène et l’oxygène, qui la constituent, utilisés isolément ou simultanément, fourniront une source de chaleur et de lumière inépuisables et d’une intensité que la houille ne saurait avoir. ”

Jules Verne, L’île mystérieuse (1874).

C + O2 o CO2 + heat

2H2 + O2 o 2H2O + electricity1

2

1 zero-tolerance vs. CO2

2 efficiency doubled(cold vs. hot combustion)

m3

3 fully reversible(almost zero entropic losses)

Renewables & H2 : Power-to-H2 (P2H)

PRODUCTION

STORAGE& PIPING

Electrical line

H2-to-power

H2-to-mobility

USE

& H2-to-X

Power-to-H2 { electro-chemical H2 production

WATER ELECTROLYSIS

Water electrolysis : an old(-fashioned) technology

1953

2009

Water electrolysis : kW o MW

o 2-3 MW

o ???

Power-to-H2 (P2H) vs. Power-to-Gas (P2G)

Synthetic Natural Gas (methane – CH4)

CH4 + 2O2=

CO2 + 2H2O

2H2 + O2=

2H2OMethanation

CO2 + 4H2 o CH4 + 2H2O

H2-to-industry

(synthesis)

Belgium has H2 piping o Power-to-H2 !!!

Power-to-H2 : long-term storage (on GW-scale)

P2H: (very) dynamic response

1. the context

2. the technological challenge(s)

3. the WallonHY project

4. the Belgian perspectives (by 2020)

Water electrolysis scale-up into MW

Scale-up : how big can we get ?

1 MW : t 100 cells !!!

0

20

40

60

80

100

0 200 400 600 800 1000

H2

outp

ut [a

.u.]

# Cells

Power Input [kW]

MW electrolysis scale-up = missing link !

CO2 + 4H2 m CH4 + 2H2O2H2O o 2H2 + O2

175 kW o 2 MW

1953

MW electrolysis so far : just multiply kW units

135 MW !!!

MW water electrolysis needs process intensification

2 MW # 6 x 350 kW

Buy 5 .... get 1 free ???

zScale-up that reduces H2 price !!!

1. the context

2. the technological challenge(s)

3. the WallonHY project

4. the Belgian perspectives (by 2020)

An elegant solution : 3-D (macro-porous) electrodes

� Significantly improved H2 production rate o MW input power :

1) more (internal) surface area for the same (macroscopic) volume ;

2) improved gas evolution ;

� Fully compatible with current (kW) electrolyser technology :

• keep same (electro-catalytic) electrode material (Ni-alloys) ;

• keep same cell geometry (replacing 2-D by 3-D plate-like electrodes) ;

3-D electrodes : effect of surface area

3-D : 8.3 dm2

2-D : 1.9 10-1 dm2 y 50

1-D : 2.8 10-3 dm2 y 3000

-3

-2

-1

0

-2 -1,5 -1 -0,5 0

Cat

hode

pot

entia

l E (V

/SH

E)

Current I (A)

1-D wire

2-D plate

3-D foam (100 ppi)

given/requestedH2 output (Nm3/hr)

-2,5

-2

-1,5

-1

-0,5

0

10-3 10-2 10-1 100 101Cat

hode

(ove

r)pot

entia

l (V

)

Surface area [dm2]

I = 1 A

[de Radigues and Proost, Chemical Engineering Journal, 2010]

3-D electrodes : validated on lab-scale (UCL)

� Significantly improved H2 production rate o MW input power :

1) more (internal) surface area for the same (macroscopic) volume ;

2) improved gas evolution.

ANTICIPATED

� Significantly improved H2 production rate :

1) increased surface area reduces overpotential ;

2) macro-porous 3-D morphology favours gas evolution ;

VALIDATED

single bubble detachment

bubble growth by coalescene

natural (free) convection

growth of a single bubble

Project « WallonHY » (2016-2019)

• « Power-to-H2: une feuille de route technologique et socio-économique pour la réalisation d'un premier (site) démonstrateur en Wallonie » ;

• Partners :

• Expected outcome :

9 pilot-scale electrolyser (3-D electrodes) ;

9 stake-holders manifest for H2 in Wallonia for 2020 - 2030 ;

9 integration in European H2-mobility corridor networks ;

1. the context

2. the technological challenge(s)

3. the WallonHY project

4. the Belgian perspectives (by 2020)

Belgium lacks visibility (despite all regional efforts)

Belgium : national vs. regional

« standing still together ... »

Who does what (by 2020) ?

? ?? ?

� need for initiatives on the Belgian level !

(2015-2019)

(2020-2025)

International Energy Agency / Hydrogen Implementation Agreement

NIP H2 mobility Belgium : politically committed (October 2015)

NIP H2 mobility Belgium(1) HRS deployment

(2) H2-fueled cars

(3) H2-fueled busses

5 ton CO2 per (diesel) car per year

x 20x 300050 H2‐busses allow for about the 

same CO2‐reduction as 1000 H2‐cars

y 20

2000 (measured)

loss in statistical life expectancy (in months) attributed to particulate matters (PM)

Clean fuels for transport directive

NIP H2 mobility in Belgium : H2 consumption

0

50

100

150

200

0

100

200

0 20 40 60 80 100

H2

bus (22 kg/day)

H2 car (0.7 kg/day)

H2 c

onsu

mpt

ion

(kg/

day) H

2 production (kg/day)

Number of H2 vehicles (car or bus)

1 MW # 5 H2 busses0

50

100

150

200

0 200 400 600 800 10000

20

40

60

80

100

H2 o

utpu

t [kg

/day

]

# Cells

Power Input [kW]

1 MW # 120 kg H2/day

@ 33% capacity

1 H2‐bus sells 80,000 Euro H2 per year1 H2‐car (only) 2,500 Euro (# 30 times less)

H2 bus demo-project « P2H2mobility » (2017 ?)

• 20 (2x10) H2 busses ;• one 2 MW electrolyser ;

Benelux = one of 5 regional H2 bus clusters

Benelux !!!

Green H2 o renewables in Belgium ???

Power-to-H2 H2-to-mobility

injection into grid

Total = 8% de la consommation(objectif belge 2020 = 13%)

Source : www.apere.org/observatoires (merci à H2Net)

Green H2 : make it yourself (from renewables) !

P2H : how big should we get by 2020 ?

• strongly depends on users/applications ;

• current (EU) business model = H2 mobility ;

• requires on-site & green H2 production ;

• MW-scale is (in my opinion) « just what we need (by 2020) » ;

2015 : 5,431 MW

2030 : 13,000 MW

2050 : 24,900 MW

• 100 MW electrolyser :# 20.000 Nm3/hr# 2 ton H2/day

• % of installed renewable power :1.8 o 0.8 o 0.4 %

• CAPEX (Euro/kW) :1000 o 700 o 385= same as for 50 2 MW electrolysers !

• electricity price ???Euro/kWhoEuro/kW

Grid-balancing = BelgHYum level ...

http://www.power-to-gas.be

H2 price(Euro/kg)

SMR H2 # 4,5 Euro/kg

Project « BelgHYum » (Fall 2016) : P2H for grid-balancing

• « Une Feuille de Route pour le Développement d’une filière Hydrogène en Belgique » ;

• Partners :

• Expected outcome (horizon 2020-2025) :

9 grid-balancing opportunities of P2H in Belgium ;

9 electricity price regulations for such P2H services ;

9 stake-holders manifest for H2 in Belgium (outside mobility) ;

Summary : Belgian H2 future should look bright !!!

Cluster TechnologyofWalloniaEnergy,EnvironmentandsustainableDevelopment

TWEEDAsblRueNatalis 2– 4020Liège– Belgium

BricoutPaulProjectengineer

pbricout@clustertweed.be

OlivierUlriciProjectengineer

oulrici@clustertweed.be

CédricBrüllDirector

cbrull@clustertweed.be

www.clustertweed.be