Sukumar Rajauria Néel Institute, CNRS and Université Joseph Fourier, Grenoble, France With H....

Post on 18-Dec-2015

215 views 0 download

Tags:

Transcript of Sukumar Rajauria Néel Institute, CNRS and Université Joseph Fourier, Grenoble, France With H....

Sukumar RajauriaNéel Institute,

CNRS and Université Joseph Fourier, Grenoble, France

With H. Courtois, P. Gandit, T. Fournier, F. Hekking, B. Pannetier

Inherent Thermometer in a Superconductor – Normal metal – Superconductor cooling

junction

Outline

• Introduction

• Sample and Experiments

• Extraction of electronic temperature

• Thermal model

• Conclusion

E

I ST = 0 K

Empty States

Occupied States

Forbidden states

N

Quasiparticle Tunneling in N-I-S junction

Principle of N-I-S coolerThe superconductor energy gapInduces an energy-selectivetunneling.

Quasiparticle Tunneling in N-I-S junction

E

I ST > 0 K

N

~4kT

Empty States

Occupied States

Forbidden states

Principle of N-I-S coolerThe superconductor energy gapInduces an energy-selectivetunneling.

0 1 2 30

1

2

3

T = 0.49Tc

IeR

n/

V/

T = 0.07Tc

d)eV(f)eV(f)(NeR

I NNSN

1

E

I S

Empty States

Occupied States

T > 0 K

eV

It

Forbidden states

N

Quasiparticle Tunneling in N-I-S junction

Principle of N-I-S coolerThe superconductor energy gapInduces an energy-selectivetunneling.

d)(f)eV(f)eV)((NRe

Q NSSN

2

1

E

I S

Empty States

Occupied States

T > 0 K

eV Forbidden states

N

Q

Quasiparticle Tunneling in N-I-S junction

Principle of N-I-S cooler: Extraction of heat current by tunneling of hot quasiparticle out of the Normal metal in N-I-S junction.

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,50,00

0,01

0,02

0,03

0,04

0,05

0,06

T = 0.49Tc

Pe2 R

N/

(0)2

V/(0)

T = 0.07Tc

F. Giazotto, T. T. Heikkila, A. Luukanen, A. M. Savin and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006).

S-I-N-I-S = 2 × N-I-S junctions in series

Pcool increases by a factor of 2

Better thermal isolation of N-island

Vbias

S N S

Thermometer

Need for a thermometer !

EE

I S

Empty States

Occupied States

T > 0 KN

eVeV

S

ItIt

QQ

The S-I-N-I-S geometry

I

)Tk

eVexp(II

N,eB

0

E. Favre-Nicollin et. al.

Thermometer Junctions

Cooler junctions

2 µm

Cu

Al

Al

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0

10-2

10-1

100

Cooler ON 134 mK

dI/dV

The

rmom

eter

VThermometer

/

Cooler OFF 288 mK

Thermometry with N-I-S junctions

Additional N-I-S junctions can be used as a thermometer:

This work

• How much can we lower the electronic temperature ?

• Can we avoid the use of N-I-S thermometer junctions ?

• What about the phonons ?

• Is a quantitative analysis possible ?

Probe Junction: N electrode is strongly thermalized, litlle cooling effect expected.

I

1 µm

Cu

Cu

Al

Cooler junctions: N electrode is weakly coupled to external world,

strong cooling effect expected.

A cooler with improved aspect ratio

0.001

0.01

0.1

1

0.01

0.1

1

10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

dI/dV(norm.)

V/(2)

Cooler

Probe

Probe follows isothermal prediction at Tbase.

High resolution measurement(log scale)

« Cooler behaves differently »

)Tk

eVexp(II

N,eB

0

Probe

Tbase = 304 mK

Cooler

Al

I

1 µm

CuCu

Cooling in N-I-S junction

ProbeCooler

0.0 0.1 0.2 0.3 0.4 0.510-4

10-3

10-2

10-1

100

IeR

n/

V (mV)

T = 98 mK

IsothermT = 304 mK

Cooler Superposition of expt data with isotherm gives the electronic temperature at a particular bias.

Temperature Determination

Determination of the bias-dependent electron temperature

-0.4 -0.2 0.0 0.2 0.40

100

200

300

T (

mK

)

V (mV)

Tbase

dEEfeVEfEneVE

eR1

VP SNSn

cool

55ephphe TTUP

44phbaseK TTKAP

N electrons, TeS, Tbase S, Tbase

N phonons, Tph

Substrate phonons, Tbase

Power flow from N electrons to the S electrodes remaining at base temperature

Electron - phonon coupling

Kapitza thermal coupling

The thermal model

Kphecool PPP2 Steady state:

dEEfeVEfEneVE

eR1

VP SNSn

cool

55ephphe TTUP

N electrons, TeS, Tbase S, Tbase

N phonons, Tph

Substrate phonons, Tbase

Power flow from N electrons to the S electrodes remaining at base temperature

Electron - phonon coupling

Kapitza thermal coupling

The thermal model

Kphecool PPP2 Steady state:

PK KA Tbase4 Tph

4

Hyp.: N phonons are strongly thermalized

For Tph = Tbase

Impossible to fit data with a given

Need to let phonon temperature Tph vary

5base

5ecool TTUP2

5base

cool5

base

e

T

P2U1

1T

T

Hypothesis of phonon thermalized to the bath

0 10 20 30 40 50 600,0

0,2

0,4

0,6

0,8

1,0

T (K) (*109 Wm-3K-5

)------------------------------------292 1,21489 1,02586 0,80------------------------------------

(Te/

Tba

se)5

Pcool

/Tbase

5 (pW/K5)

TBase (mK) (109) (Wm-3K-5)

2

dEEfeVEfEneVE

eR1

VP SNSn

cool

55ephphe TTUP

44phbaseK TTKAP

N electrons, TeS, Tbase S, Tbase

N phonons, Tph

Substrate phonons, Tbase

Power flow from N electrons to the S electrodes remaining at base temperature

Electron - phonon coupling

Kapitza thermal coupling

The thermal model

Kphecool PPP2 Steady state:

N phonons can be cooled

Two free fit parameters:

= 2 nW.µm-3.K-5

K = 55 W.m-2.K-4

Determination of both

electron (Te) and

phonon (Tph)

temperature.

Phonons cool down by

~ 50 mK at 500 mK

0,0 0,1 0,2 0,3 0,40

100

200

300

400

500

600

Electrons

T (

mK

)

V (mV)

Phonons

Phonon Cooling

Conclusion

• Direct determination of the electronic

temperature in the N-metal

• Quantitative analysis of cooling

• Including phonon cooling enables a good

fit to the data

Thanks to:

EU STREP SFINX

NanoSciERA “NanoFridge“

0.0 0.1 0.2 0.3 0.4 0.510-4

10-3

10-2

10-1

100

IeR

n/

V (mV)

T = 98 mK

IsothermT = 304 mK

Cooler

0,0 0,1 0,2 0,3 0,40

100

200

300

400

500

600

ElectronsT

(m

K)

V (mV)

Phonons

Phonon temperature

dk

hvT

B

s

2

For d = 50 nm, T > 0.35 K

Extrapolation of the model

0.001

0.01

0.1

1

10

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

dI/dV(norm.)

V (mV)

K = 0525125

isotherm320 mK

Parameter K governs coupling between the metal phonons and the substrate

K = 0: diff. cond. peak at zero bias

-1

-0.5

0

0.5

1

V

0.2

0.4

0.6

0.8

T

-0.05

-0.025

0

0.025

0.05

P

-1

-0.5

0

0.5

1

V