Structuring case-study Crystallization · PDF fileStructuring case-study Crystallization...

Post on 10-Mar-2018

217 views 4 download

Transcript of Structuring case-study Crystallization · PDF fileStructuring case-study Crystallization...

www.irstea.fr

Pour mieux affirmer ses missions, le Cemagref devient Irstea

Structuring case-studyCrystallization

Graciela ALVAREZ, H. BENKHELIFA, M. ARELLANO, D. LEDUCQ, D. FLICK ,

Irstea,APT,CSIC, UCL, UNIROMA

Workshop CAFE EFFOST 20th November 2012

graciela.alvarez@irstea.fr

2

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Process and industrial problem

Pasteurization 85°C

Storage

MixMix Ripening 4°C

12 to 24 hrs

Packaging, Moulding

55°°CC

-- 55°°CC

Initial Freezing Initial Freezing -- Freezer Freezer

Exit TExit T°°C C --5 to 5 to --66°°CC

Mixture 60°C Ingredients

Refrigerant fluid entry

Scraper blades

Refrigerant fluid

exit

Sorbet

mix

entry

Sorbet exit

30-50% ice

Ice crystal size < 50µm to

avoid undesirable quality:

coarse, grainy texture.

Homogenization

60°C - 200 bars

3

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

On-line sensors

Freezing

MixMix

SorbetSorbet

Water %Water %

Sugar %Sugar %

Gum %Gum %

Ice CreamIce Cream

Energy Energy

ConsumptionConsumption

•• Ice crystal sizeIce crystal size

•• ViscosityViscosity

••TemperatureTemperature

Mix flow rateMix flow rate

[kg/s][kg/s]Dasher rotation speed Dasher rotation speed

[rpm][rpm]

Raw

material

Process

SSHEProduct

TT°°C Evap.C Evap.

[[°°C]C]

Sorbet crystallization : Water/ Sugar/ Gum without air

Controlled variables

Actuators

minmax and φφφφφφφφ ≥≥≥≥≤≤≤≤ iceice ddwithObjective function :

==== .min

ice

elec

m

Wj

&

Objectives

4

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Experimental Device

1 - Refrigerated storage tank

2 - Volumetric piston pump

3 - SSHE or Freezer

4 - Outlet pipe

5 - Exit temperature - Pt100 probe

6 - Ice crystal size - FBRM probe

7 - Product exit

FBRM

Probe

Pt100

Probe

Lemon

Sorbet

Lemon

sorbet mix

Frozen sorbet

exit

Pilot-scale SSHE or freezer WCB MF50 - Nominal capacity: 0.007 to 0.021 kg/s

5

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Focused beam reflectance measurement

Probe Window

principle Enlarged view

Path of Focused

Beam

Chord length = time period of

reflection light * laser beam

tangential speed

6

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Experimental Device

Rheology experimental study

1 - Refrigerated tank

2 - Piston pump

3 - SSHE or freezer

4 - Pt100 probe at inlet

5 - Pipe rheometer

6 - Pressure manometers

7 - Pt100 probe at inlet

8 - Product exit

7

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Ice crystallization study

Operating Conditions Coded Values

Factors Unity - αααα -1 0 +1 + αααα

X1 - Mix flow rate (kg/s)kg/h

0.00725

0.01035

0.01450

0.01865

0.02175

X2 - R22 Temperature (°°°°C) -10.60 -12.50 -15.25 -18 -19.90

X3 - Dasher speed(rad/s)

rpm57.07545

62.83600

78.54750

94.25900

104.721000

∑ ∑∑∑= =<=

+++=3

1

3

1

23

10

ˆi ji

jiijiiii

ii XXXXY ββββ

0β iβ iiβ ijβ

ji XX

Interception, linear, quadratic, interaction effect

Experimental conditions

Effect of 3 operating conditions on 2 responses:mean chord length - draw (exit) temperature of sorbe t

Y Predicted response

8

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Effect of process on exit temperature

78.54 rad/s (750 rpm)

↘↘↘↘↘↘↘↘ TeTe↘↘↘↘↘↘↘↘ Draw temperature Draw temperature ↗↗↗↗↗↗↗↗ XiceXice

MFR (MFR (↗↗↗↗↗↗↗↗ residence times) residence times) ↘↘↘↘↘↘↘↘ Draw Draw

temperaturestemperatures

Process ResultsProcess Results

DS and Te effect

↗↗↗↗↗↗↗↗ Dasher speed results in a slightly warming of Dasher speed results in a slightly warming of

the draw temperaturethe draw temperature

Te and MFR effect

(50 kg/h)

9

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Effect of process conditions on mean chord lengthEffect of process conditions on mean chord length

78.54 rad/s (750 rpm) = cte

↘↘↘↘↘↘↘↘ TeTe↘↘↘↘↘↘↘↘ CL (Chord lenght)CL (Chord lenght)

MFR (MFR (↗↗↗↗↗↗↗↗ residence times) residence times) ↘↘↘↘↘↘↘↘not not

significant effect on CLsignificant effect on CL

Process ResultsProcess Results

DS and Te effect

↗↗↗↗↗↗↗↗ DS slightly warming of the exit temperatureDS slightly warming of the exit temperature

Te and MFR effect

(50 kg/h)= cte

↘↘↘↘↘↘↘↘ TeTe↘↘↘↘↘↘↘↘ CL (Chord lenght)CL (Chord lenght)

10

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Apparent viscosity measurementsApparent viscosity measurements

1 - Refrigerated tank

2 - Piston pump

3 - Freezer

4 - Outlet pipe

5 - Pt100 probe

6 - FBRM probe

7 - Product exit

8 - Tube viscometer

Lemon

sorbet mix

Laboratory scale pilot freezer WCB MF50

8

Frozen sorbet

exit stream

11

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Tube viscometerTube viscometer

w

w

d

dn

γσ&ln

ln=

; 2

)(

L

PRstressshearWall w

∆=σ

P∆

Slope:

Correction factor of wall

shear rate

3

4

R

VrateshearWall w π

γ&

& =

V&

12

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

1napp *K −= γη &

w

w

d

dn

γσ&ln

ln=

n

K

Slope:

flow behaviour index

Intercept:

consistency index

Tube viscometerTube viscometer

3

4*

4

13

R

V

n

ncorrectedw π

γ&

&+=

13

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Sorbet characterisation Sorbet characterisation withoutwithout airair

91.0

*66.12

54.0

=

=

R

w γσ &

94.0

*88.32

45.0

=

=

R

w γσ &

5% Ice 5% Ice contentcontent

9% Ice 9% Ice contentcontent

92.0

*81.72

41.0

=

=

R

w γσ &

14% Ice 14% Ice contentcontent

14

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Sorbet characterisation Sorbet characterisation withoutwithout airair

Sorbet becomes more shear-thinning and more viscous

with the increase in the ice volume fraction within sorbet.

↗ Ice volume fraction ↘ Flow behaviour index ↗ Ice volume fraction ↗ Consistency index

15

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Sorbet characterisation with airSorbet characterisation with air

1

10

100

1 10 100

Sh

ear

stre

ss

(Pa)

Shear Rate (1/s)

Xv.a.=0.5 - Xv.i.=0.23

Xv.a.=0.335 - Xv.i.=0.23

Xv.a.=0.2 - Xv.i.=0.23

Xv.a.=0 - Xv.i.=0.23

airmix

air

VV

V.a.Xv

+= 100

V

VO%

mix

air ×=

shear-thinning behaviour

increases in the air volume

fraction

Fig. 2. Flow behaviour of sorbet at -3.9°C (Xv.i. = 0.23) as a function of the air volume fraction (Xv.a.) at mix flow rate of

0.007 kg.s-1 and rotational speed of 78.5 rad.s-1.

n=0.397

n=0.312

n=0.269

n=0.257

Air volume fraction % Overrun

100 %

50%

25%

No Overrun

16

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Sorbet characterisation with airSorbet characterisation with air

App viscosity as a function of the shear rate for sorbet at -3.9 °C

(Xv.i. = 23%), 0.007 kg.s -1 and rotational speed of 78.5 rad.s -1.

0

10

20

30

40

50

1 10 100Shear rate 1/s

App

aren

t vis

cosi

ty (

Pa.

s) Sorbet NoOverrun

Sorbet 100%Overrun (50%v/v)

= 0.8 Pa.s without air

airwithapp ....η = 1.6 Pa.s with air

appη

17

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Flow rate kg/h

Rotation speed rpm

Tsortie ºC

Fat content Fat content % %

Overrun %

n K (Pa.s) n ηηηη app (Pa.s) à10s-1

25 600 -5 66 75 0,395 48,423 12.00

25 400 -5 66 75 0.463 38.249 11.11

25 600 -5 1212 75 0.431 81.648 22.03

25 400 -5 1212 75 0.594 60.129 23.61

Ice cream characterisation with air Ice cream characterisation with air

+ + fat globulesfat globules

↗ Fat content % ↗ Apparent viscosity

Ice cream becomes more viscous with the increase in the fat

content.

18

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

18

Ice Crystallisation modelling in the freezerIce Crystallisation modelling in the freezer

z=

r

• Plug flow in axial direction z : t resid = V/ Mix flow rate

• Crystallisation and heat transfer studied in functi on of

radial and axial position (t = z / v axial )

• Output variables : T out , Dmean, µout at steady state

Ri

Re Tmean

ωmean

at the scale of a REVRepresentative Elementary Volume

di

Dm

19

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

19

Ice Crystallization modelling in the freezer

Equations : Population balance equation

+ Energy balance equation

+ State equation (u,T,ϕi)

Growth

G = ββββ (Tsat – T)γγγγ

Breakage

Nucleationheterogeneous nucleation at wall

(((( ))))δδδδ−−−−αααα==== esat TTN

Assumptions

Non equilibrium approach

Equilibrium curve

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Sugar fraction

Fre

ezin

g P

oint

(°C

)

mix lemon

sucrose solution

Tsat for the mix obtained experimentally

νννν••••

ϕϕϕϕεεεε==== iscrapNB

20

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Model building, and model reduction

(((( ))))(L)B )RR()LL( N))t,L(.G(

Ltt,L

bec ++++−−−−δδδδ−−−−δδδδ====ψψψψ∂∂∂∂∂∂∂∂++++

∂∂∂∂∂ψ∂ψ∂ψ∂ψ� Population balance equation (without radial mixing)

2020

� PBE multiplied by Lj and integrated to obtain the moments� Balance equation for the moment given by:

(((( )))) 1j3/j1j

c1jj M.B.12NLM.G.j

dt

dM++++

−−−−−−−− −−−−++++++++====

� Ordinary equations :

dMo/dt = N + B M1

dM1/dt = G.Mo + N.Lc + B (22/3-1) M2

dM2/dt = 2.G.M1 + N. Lc2 + B (21/3-1) M3

dM3/dt = 3.G.M2 + N.Lc3 With

(((( ))))2

ee TTShdtdu ••••

γγγγµµµµ++++−−−−====

νννν••••

ϕϕϕϕεεεε==== iscrapNB

21

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Crystallization Model

Moments model

Energy balance

Growth, Nucleation and Breakage

Viscosity

The Parameters to be identified

22

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

WP4: Model building, process dynamics and model reduction

22

Model parameters range

hehe alphapalphap betabeta xixi epsilonepsilon chichi LcLc

1400 1400 -- 32003200

W.mW.m--11.K.K--11

4.e8 4.e8 –– 1.5.e91.5.e9

ss--11.m.m--33.K.K--11

3.e3.e--7 7 –– 8.e8.e--77

m.sm.s--11.K.K--11

2020--3535 10 10 –– 50 50

mm--11

1.5 1.5 -- 33 4 4 –– 8 8

µµmm

Wall heat transfer coefficient heHeterogeneous Nucleation coefficient alphap

Growth coefficient beta

Adjustment parameter of sorbet viscosity xiViscous dissipation parameter chi

Initial crystal size Lc

Breakage constant epsilon

Results steady state approach

23

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Parameter identification WP6Parameter identification WP6

� Heterogeneous Nucleation coefficient α = 11.34 108 s-1m-2K-1

� Wall heat transfer coefficient h = 2894 Wm-2K-1

� Growth coefficient ββββ = 6.37 .10-7 ms -1K-1,

�Viscous dissipation parameter X= 25,82

�The initial crystal size Lc= 6.98 µm

�Viscosity coefficient ξξξξ = 3.85

CSIC : Eva Balsa, Carlos Vilas, Antonio Alonso

AMIGO Tools optimisation and IdentificationAMIGO Tools optimisation and Identification

24

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Parameter estimation

Weighting cost function

Fit quality (mean relative residual in %):> Temperature at the output: 6.9%> Chord length: 5.1%> Viscosity: 24.1%

he : 2.89428e+003� : 1.13448e+009� : 6.37008e-007�:25.82076Lc : 6.98353e-006 : 3.85328

5 10 15 20 25 30 35 40-40

-20

0

20

Rel pred error: 100*(Tdata-T)/Tdata). Mean error output:6.91630765477107

5 10 15 20 25 30 35 40

-505

1015

Rel pred error: 100*(Lcdata-Lc)/Lcdata). Mean error:5.09405012728256

2 4 6 8 10 12 14 16-80-60-40-20

020

Rel pred error: 100*(mudata-mu)/mudata). Mean error:24.0936050368514

CSIC : Eva Balsa, Carlos Vilas, Antonio Alonso

AMIGO Tools optimisation and AMIGO Tools optimisation and IdentificationIdentification

25

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Evaporation temperature results Experimental vs simulation

2525

(mix flow rate = 35 kg/h, dasher speed = 750 rpm)

steady state approach

26

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Effet of evaporation temperature on Chord lenght .. Exp vs simulated

262626

(mix flow rate = 35 kg/h, dasher speed = 750 rpm)

27

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

WP5: Sensors

University of RomaResults of Electronic Nose Experiment at Irstea

� 6 experimental conditions created varying the following parameters:� Flow ice-cream machine (from 25 to 35 l/h)� Tevap refrigerant liquid (from -9 °C to -16.2 °C)� Mix flow rate (from 25 to 35 l/h(?))

� 36 measurements in two consecutive days.� Target parameters:

� Size crystals [µm]� Model estimated viscosity [Pa s]

28

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

WP7 : Process monitoring and controlCeline Casenave (INRA) & Denis Dochain (UCL)

29

Workshop CAFE EFFOST 20th November 2012 graciela.alvarez@irstea.fr

Thank you for you attentionThank you for you attention

The research leading to these results has received funding from the European Community‘s Seventh Framework Programme