STRUCTURE OF SOLAR RADIATION AT HIGH LATITUDES · STRUCTURE OF SOLAR RADIATION AT HIGH LATITUDES...

Post on 05-Nov-2019

8 views 0 download

Transcript of STRUCTURE OF SOLAR RADIATION AT HIGH LATITUDES · STRUCTURE OF SOLAR RADIATION AT HIGH LATITUDES...

STRUCTURE OF SOLAR RADIATION AT HIGH LATITUDES  

Teolan Tomson, Enn Mellikov1

 

Department of Materials Science, Tallinn University of Technology  

Sun’s path in June month at different latitudes

@ 40o N

@ 60o N

Night time @ 40oN

Rome: 1524 kWhy-1; a 25o tilted collector loses 6 sunny hours per dayStockholm: 975 kWhy-1; a 45o tilted collector loses 10 sunny hours per day

Night time @ 60oN

1

, Riga, 30 May−1 June

1. Tracking – why?Converted solar energy QC [@isotropic model of Gd]

Gb – beam commponent of the

irradiance Gb – diffuse commponent of the

irradianceT – exposition intervalt – current timekQ – incident angle modifier =τα (Θ )

Θ – incident angleΨ – apperture angleτα – transmitance absorbtance product

( ) ( )dttGdtktGQT

dT

bCψθ

θ,,, ∫+∫=

2

Tsüklonite teekond

Typical radiation conditions at high latitudes, correlation between direct and diffuse fractions of the irradiance

Relative duration,%

10,7

8,8

80,5

Blue-sky

Darkness

Variable

81,2

16,1

2,7

Relative energy, %

- Ühendpooljuhtmaterjalide õhukesed kiled keemilistel ja elektrokeemilistel meetoditel, keemia ja tehnoloogia

- Ühendpooljuhtmaterjalide pulbrite moodustumine rekristallisatsiooniprotsessis, mehhanism ja kineetika - Õhukesekileliste ja pulbriliste pooljuhtpäikese-elementide keemia, füüsika ja tehnoloogia

Materjaliteaduslike uuringute suunad

EESMÄRK: uued ja odavad teaduslikult põhjendatud tehnoloogiad päikesepatareide valmistamiseks

Monoterapulbrid

Monoterapulbrite eelised:

1. Iga pulbriosake on väike monokristall;

2. kitsas granulomeetriline koostis;

3. Homogeenne keemiline koostis ja lisandite jaotus

Monoterakihtide eelised

• Materjalide ja seadiste odavad tehnoloogiad

• Võimalus valmistada seadiseid praktiliselt piiramatus pindalas

• Võimalus kasutada materjali praktiliselt 100%-liselt

TUT heliodon

TUT mirror box

~

~

PPV (t)σPPV

XG {Σ (T, L)}

RL

U(t)=var

U(t)=const

PG ∞

Reasons to investigate dynamical behavior of the solar radiation

Due to τPV0 dynamic of a PV farm is assessed by the dynamical behavior of cloud’s shadows

1. Fatigue of materials under alternating radiation 2. Assessment of capacity of the (local) energy storage

unit3. Problems of the stability of frequency in (a weak) grid 4. Problems of voltage flicker for the local load

3

Cumulus Humilis (field measurements)

45

T. Tomson: Solar engineering in Estonia: Solar resource

Fragment of the recording in conditions of (single-layer) Cumulus Humilis

8

Automat to detect the fast alternating radiation

9

Automatically recorded data of the fast alternating radiationThe largest increment (705 Wm−2s−1), recorded during summer season 2008

14

Automatically recorded data of the fast alternating radiationDigitization of the recorded data (assessment of fronts)

15

7

T. Tomson: Solar engineering in Estonia: Solar PV-electricity

Eesti päikesetoitel mere-hoiatusmärgid

9

T. Tomson: Solar engineering in Estonia: Solar PV-electricity

10

T. Tomson: Solar engineering in Estonia: Solar PV-electricity

12

T. Tomson: Solar engineering in Estonia: Solar PV-electricity

14

T. Tomson: Solar engineering in Estonia: Solar PV-electricity

15

T. Tomson: Solar engineering in Estonia: Solar PV-electricity

5

12 3

4

6

g:100% r:10%l:20%

l:5%

u:~65%

1. Optical cover (glass, polycarbonat)2. Air gap (insulation gap)3. Absorber4. Back insulation (mineral wool)5 Mirror film6 Back cover (Al, plywood)

FPC- flat plate collector

g: irradiated 100%; r: reflected 10%; l: emitted losses 20%; u: useful liquid flow 65%; l Conducted losses 1.5%

16

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

Efficiency curves I

21

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

EVTC Evacuated tube collector

Heatpipe

20

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

~60 ºC

~10 ºC

IT (h)

~60 ºC

~10 ºC

Gas, pellet orElectrical boiler

Circulation pump

Expansion tank

Mantel tank

Most common double loop DHW system

23

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

Vändra haigla

28

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

Keila SOS lasteküla

29

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

30

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

33

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

35

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

36

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

Valga lasteaed

37

T. Tomson: Solar engineering in Estonia: Solar thermal energy generation

46

T. Tomson: Solar engineering in Estonia: Solar resource

Euroopa energiavarustus