Structure, Morphology and Energetics of Polar Lows: A...

Post on 07-Jun-2020

5 views 0 download

Transcript of Structure, Morphology and Energetics of Polar Lows: A...

  • First THORPEX Scientific Symposium (5-9 December 2004, Montreal, Canada)

    Structure, Morphology and Energetics of Polar Lows: A Numerical Experiment

    Wataru Yanase and Hiroshi Niino (ORI, Univ. of Tokyo)

    Contents1.Introduction2.Experimental design3.Results

    1)Dependence of morphology on baroclinicity

    2)Structure and developing mechanism

    4.Summary and future subjects20 DEC 2003 (MOBIS)

  • Meso-scale lows around Japan islands

    Subtropical cyclone

    Meso-α-scale low

    Polar low

    Pacific Ocean

    JapanSea

    25N

    30N

    35N

    40N

    East China Sea

  • Polar low on 21 January 1997

    Fu et al. (2004, MWR)Yanase et al. (2004, MWR)

    (Courtesy of Japan Meteorological Society)

  • (Courtesy of Japan Meteorological Society)

  • Numerical simulation (00JST 21- 00JST 22 JAN 1997)

    MRI-NHM

    Horizontal grid size =2km

    Yanase et al.(2002, GRL)

  • 1.Introduction A variety of cloud patterns of polar lowsAn eye & spiral bands Comma-shaped cloud

    Nordeng & Rasumusen(1992) Rasumussen(1985) Reed & Duncan (1987)

    Rasumussen(1981)Businger & Baik(1991) Shapiro et al.(1987)1000km

  • Development mechanism of polar lows・CISK Rasmussen(1979),Bratseth(1985), Okland(1987):

    linear theory

    Emanuel and Rotunno(1989): axisymmetric numerical simulation

    ・WISHE

    ・Baroclinic instabilityHarold and Browning(1969):observationMansfield(1974), Duncan(1977), Reed and Duncan (1987), Tsuboki and Wakahama(1992): linear theory

    ・CISK+Baroclinic instabilitySardie and Warner(1983): linear theory

    No nonlinear, nearly cloud-resolving, three-dimensional model study in an idealized configuration has been performed.

  • Purpose of the present study:・To examine if polar lows having a variety of cloud patterns are reproduced in a numerical experiment for an observed range of the environmental parameters.

    ・To understand how the morphology of a polar low depends on the environment.

    ・To clarify the development mechanism and structure of polar lows having different cloud patterns.

    Method

    Idealized numerical experiment using a three-dimensional non-hydrostatic model that marginally resolves cumulus convection.

  • 2.Design of the numerical experiment(based on Yanase and Niino, 2005, GRL, Vol.32, in press)

    Numerical model: MRI/NPD-NHM(Saito et al., 2001)

    Horizontal grid size: 2km or 5km

    Vertical grid size : 40m~780m

    Boundary conditionsx-direction: cyclic y-direction: free-slip z-direction:

    top: free-slip bottom: bulk

    f-plane (70N)(Yanase, 2004, Doctor Thesis, Dept. Earth and Planet.

    Sci , The University of Tokyo)

    method

  • Vs=7m/s, rmax =20km

    Basic state

    Westerly flow in a thermal wind balance

    SST is 10K higher than the temperature at the lowest level (Yanase, 2004)

    Axisymmetric initial vortex(in thermal wind balance)

  • 3. Results1)Time evolution of eddy kinetic energy on baroclinicity

    KE

    Mx: Moist exp. with a vertical shear of x×10-3s-1

    (Yanase and Niino, 2005, GRL, in press)

    ∆x=∆y=5km

  • t=20h t=50ht=30h t=60h

    M0

    M1

    M3

    Dependence of morphology on baroclinicity

    1000km

    (Yanase and Niino, 2005, GRL, Vol.32, in press)

  • Variety of cloud patterns of polar lows

    Businger & Baik(1991)

    Nordeng & Rasumusen(1992)

    Rasumussen(1985) Reed & Duncan (1987)

    Rasumussen(1981) Shapiro et al.(1987)1000km

    Uz=1-2×10-3s-1 Uz=2-4×10-3s-1

  • 2)Structure and development mechanismi) No baroclinicity case(M0)

    Horizontal grid size=2km

    t=70hr

    (Yanase and Niino, 2005, GRL, Vol.32, in press)

  • Tangential velocity (contour)Potential temperature (shade)

    Radial-vertical cross-section of azimuthally-averaged quantities

    Radial velocity (green;1m/s) Vertical velocity (red;0.2m/s) Relative humidity (shade)

    (60-70hrs)

    50 km100 150 200

    50 km100 150 200

    (Yanase and Niino, 2005, GRL, Vol.32, in press)

  • Kinetic energy

    Pressure anomalyCNTLR50

    V2

    R100

    (Yanase, 2004)

    (Yanase, 2004)

    Dependence on the initial disturbance

    R50: 2.5 times larger in size

    R100: 5 times larger in size

    V2: 3.5 times weaker

    Consistent with Emanuel & Rotunno(1989)

  • ii)Strong baroclinicity case(M3)T=50hrT=30hr

    T=70hr

    T=20hr

    T=60hr

    (Yanase, 2004)

  • Evolution for random white noiset=20hr t=30hr t=40hr

    t=50hr t=60hr t=70hr

    M3( 0.5)θ∆ =

    (Yanase, 2004)

  • Comparison of dry and moist experiments

    Dry Moist

    Ps(cont.) , w (z=2880m)

    m/s m/s(Yanase, 2004)

  • (cont.),

    (cont.),

    Dry MoistZonal-vertical cross-section

    p′

    p′

    θ ′

    w

    (Yanase, 2004)

  • 4. Summary1)A cloud pattern of a polar low depends principally on baroclinicity (consistent with observation).

    2) For weak baroclinicity, a nearly axisymmetric vortex with a cloud-free eye and spiral bands develops.

    CISK/WISHE.

    Strong dependence on the initial disturbance.

    3) For strong baroclinicity, a polar low with a comma-shaped cloud pattern develops.

    Baroclinic instability modified by latent heating.

    Initial disturbances are not crucial.

  • 5. Future subjects

    1)Initiation processes

    Upper disturbances, topography, and barotropic instability

    2)Effect of surface fluxes

    Uniform flow, reverse shear and so on.

    3)Understanding wide spectrum of meso-scale cyclones

    ・CISK/WISHE vs. Baroclinic instability

    Tropical cyclone, subtropical cyclone, polar low, and meso-α-scale cyclone

    Structure, Morphology and Energetics of Polar Lows: A Numerical ExperimentMeso-scale lows around Japan islandsPolar low on 21 January 1997Numerical simulation1.IntroductionDevelopment mechanism of polar lowsPurpose of the present study:2.Design of the numerical experimentBasic state3. ResultsDependence of morphology on baroclinicityVariety of cloud patterns of polar lowsi) No baroclinicity case(M0)Radial-vertical cross-section of azimuthally-averaged quantitiesDependence on the initial disturbanceii)Strong baroclinicity case(M3)Evolution for random white noiseComparison of dry and moist experiments4. Summary5. Future subjects

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice