Strength of Energy Engineering Materials Abdel-Fatah M HASHEM Professor of materials science South...

Post on 14-Dec-2015

216 views 2 download

Tags:

Transcript of Strength of Energy Engineering Materials Abdel-Fatah M HASHEM Professor of materials science South...

Strength of Energy Engineering Materials

Abdel-Fatah M HASHEM

Professor of materials scienceSouth Valley University, EGYPT

April 2009, Japan

Collaborative Research Centre SFB 651 at the AU and SVU

%65

%58

TurbinesFluid dynamicsPhys. chemistryMetal physicsMaterialsCastingCoatingWeldingMetal formingLaser techn.

12 years15 Professors and their co- workers20 Million € =150 Million Egypt. pounds

Inlet Temperature of Gas turbines: from 1230 °C to 1320 °C

Inlet Temperature of Steam Turbines: from 600 °C to

700 °C

Steam turbine (Siemens)

<1990 560 °C 12% Cr, 1% Mo (X20CrMoV12-1)>1990 600 °C 9% Cr-Steels P91 +0% W

E911 +1% W P92: +2% W>2000 625 °C NF12: 12% Cr, 3% W, 3% Co Goal 700 °C Nickel-Base-Alloys

E9110.40

0.42

0.44

0.46

0.48

150 200 250 300

650 °C

700 °C

450°C

500 °C

550 °C

600 °C

Pressure, bar

The

rmal

Effi

cie

ncy

T

h

Steam Turbine: Increase of efficiency

X20CrMoV12-1 12C1Mo-VP91: 9Cr-1Mo-VNbE911 X12CrMoWVNbN10-1-1P92 (NF616) 9Cr-0,5Mo-1.8W-V-NbNF12: 12Cr-2.6W-2.5Co-0.5Ni-V-Nb

Steam Turbine: Cooling system

Laboratory experimentsReality: Multi-axial stress state with stress components varying with timeData available: Uni-axial experiments with simple time functionsTherefore, Modelling is essential

Strain

Str

ess

Low cycle fatigue test

= const.T = const.

Time

Cre

ep

Str

ain

Creep test

= const.T = const.

Time

Str

ess

Relaxation test

= const.T = const.

Strain rate

Str

ess

Tensile Test

d/dt = const.T = const.

Influence of Temperature on the Stress strain Curve

200 °C - 700 °C Intercrystalline damage

< 700° C Dynamic recrystallisation

0

100

200

300

400

500

600

700

0 10 20 30

b)

AA7075-T7351

250 °C

200 °C

150 °C

100 °C

20 °C

300 °C

Engineering Strain , %

Eng

inee

ring

Str

ess

, M

Pa

0

200

400

600

800

1000

0 20 40 60

a)

- 50

/ °C =

X6CrNi18-11

1000900

- 100- 150

400

800

700650

500600

200100

23

Engineering Strain , %

Eng

inee

ring

Str

ess

, M

Pa

23 °C – 150 °C Dynamic recovery

200 °C - 300 °C Intercrystalline damage

Flow curve: Description and Influence of strain rate

4321

2

21

/exp(1:

MagdEl)1(/

KocksMecking/

CCCCaGb

kckdd

kkdd

?10nKK

0

200

400

600

800

1000

0 0.1 0.2 0.3

293 K373 K473 K573 K873 K923 K773 K973 K1073 K1173 K

X6CrNi18-11

True Strain

Tru

e S

tre

ss,

M

Pa

0

100

200

300

400

500

0 0.1 0.2 0.3

1.7 10-5

1.7 10-6

1.7 10-4

1.7 10-3

d/dt / s-1

=

True StrainT

rue

Sre

ss ,

MP

a

Power law ?

Creep curves and creep rate curves

)]/(exp[),(min RTQSf

10-4

10-3

10-2

10-1

100

10-2

100

102

104

106

200190180160140130120110100 90 70

X6CrNi18-11: 700 °C

/MPa=

Time , h

Cre

ep

Str

ain

10-5

10-4

10-3

10-2

10-1

100

10-2

100

102

104

106

200190180160140130120110100 90 70

b)

/MPa=

Time , h

Cre

ep

Ra

te ,

h

-1

Minimum creep rate as stress function and creep fracture curve

10-5

10-4

10-3

10-2

10-1

100

100 200 300

C [sinh(/*)]N

C exp( )

C ( /*)N

X6CrNi18-11 = 700 °C

Creep Stress, MPa

Min

imum

Cre

ep

Rat

e ,

h-1

50

100

150

200

250

0.1 10 1000

X6CrNi18-11 = 700 °C

Fracture time , h S

tres

s ,

MP

a

Garofallo*

sinh

)exp(

BailyNorton

min

min

min

N

N

Soderberg

Up to 10000 h University laboratoryUp to 200000 h Industry, Standards

Proof stress and creep strength as Loading limitsDesign limits: with a factor of safety of 1.5

1 .Low Temperatures: 0,2% Proof Stress

2 .High Temperatures: Creep Strength= Stress for a fracture time of 100000 h

0

200

400

600

200 400 600 800 1000

Ni-Base Alloyaustenitic Steel12% Cr-SteelLA 2.25%Cr-SteelLA 1%Cr-SteelLA Mo-SteelLA Mn-Steelunalloyed Steel

Rp0,2

Rm 100000 h

Temperature oC

Rp

0,2

,

Rm

10

00

00

h ,

M

Pa

0

50

100

150

200

500 550 600 650 700

NF 616(9Cr-0.5Mo-1.8W-VNb)

X20CrMoV12-1(12Cr-1Mo-V)

E 911(10Cr-1Mo -1W-VNb)

T 91(9Cr-1Mo-VNb)

Temperature , °C

Cre

ep

Ste

ng

th

Rm

10

0 0

00

,

MP

a

Maximum service temperature: Creep strength for 100000 h = 100 MPa

Increase of creep strength1. Reducing grain boundary area per unit volume

Coarce grains Directional Single solidification crystals

10-8

10-7

10-6

10-5

10-4

10 20 50 100 200

Ilschner

= 704 oC

65

85

105130

0 / MPa =

austenitic Steel

Grain Size , µm M

inim

um

Cre

ep

Ra

te

, 1

/s

Increase of creep strength2. Precipitation hardening Barriers for the dislocation

10-7

10-5

10-3

10-1

10-1

101

103

105

/ MPa =

100110

130140

Alloy 800HT, solution annealed

=700°C

Time , h

Min

imu

m C

ree

p R

ate

, 1

/h

Influence of nitrides0.05 m% N

[Abe, F.: Sol.State.Phys. 8(2004)305 ]

Increase of creep strength3. Reinforcement by continuous fibres

10-7

10-6

10-5

10-4

10-3

10-2

100

101

102

103

FibreComposite

0

10.660.450.24

Vf=

Stress, MPa

Min

imu

m C

ree

p R

ate

, 1

/h

Not for cyclic compression !

Creep under stresses and temperatures

varying with time The Creep rate depends on the effective stress i.e. on the difference between Applied stress and internal back stress

niC )(

0

50

100

0 2 4 6 8

X6CrNi18-11690 °C

i

Time , h

App

lied

and

Bac

k S

tess

, M

Pa

0

50

100

0 2 4 6 8

X6CrNi18-11690 °C

i

Time , h

Concept of the internal back stress

i

niC

0

)(

10-5

10-4

10-3

10-2

10-1

5 10 20 50 100

/ °C =

800710

650

X6CrNi18-11

Effective Stress ( - is) , MPa

Min

imum

Cre

ep R

ate

,

h-1

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0 200 400 600 800 1000

X22CrMoV12-1T = 700 °C

30

50

60

80

90

95R / MPa =

0 = 100 MPa

Time , s

Cre

ep

Str

ain

aft

er

Str

ess

dro

p

Internal back stress

)/(exp1 11

1

1

C

C

d

d

is

i

iisi

/1

/1 ississis )/exp()( 0 TkTiss

0

100

200

800 900 1000 1100 1200

X8CrNi18-11X22CrMoV12-1X8CrNiMoNb16-16

iss

=k0exp(/T)

Temperature, K

Sat

urat

ion

Bac

k S

ress

is

s , M

Pa

0

100

200

0 100 200 300 400

700 °C

650 °C

710 °C

650 °CX22CrMoV12-1

X6CrNi18-11

Applied Stress , MPa

Inte

rna

l Bac

k st

ress

is ,

MP

a0

0.25

0.50

0.75

1.00

0 0.2 0.4 0.6 0.8 1.0

Pure AluminiumX8CrNiMoNb16-16X6CrNi18-11X22CrNiMoV 12 1

Relative Creep Strain / 1

Rel

ativ

e In

tern

al B

ack

Str

ess

i /

is

Cyclic creep: Life assessment

L= 0.6 under pulsating stressL= 0.8 under pulsating Temperature

10-5

10-4

10-3

10-2

10-1

0 200 400 600

= 150 MPa changing periodically

X6CrNi18-11

650 °C

635 °C

time , h

10-5

10-4

10-3

10-2

10-1

0 200 400 600

changing periodically650 °C

X6CrNi18-11

150 MPa

125 MPa

Time , h

Cre

ep

Ra

te,

h-1

Lt

t

f

Stress Relaxation: Basic equation

tt0

L0

elL

0

cL

0

el 0 L

0

),,(0

)()(

)()(

.00

tTE

tE

t

tt

const

cr

cr

crel

el

• Creep strain increases with time• Total strain remains constant• The elastic strain decreases• Stress decreases with time

Stress relaxation curves

Nickel-base alloy :Crystalline order changes around 550°C increases the specific volume And hence reduces relaxation

0

100

200

300

400

0 1000 2000 3000

X22CrMoV12-1

550 °C

600 °C

500 °C

Time , h

Str

ess

, M

Pa

0

100

200

300

0 10 20 30 40

0 / MPa =T = 650 °C

X6CrNi18-11

100150200250

300

Str

ess

,

MP

a

0

100

200

0 20 40 60 80

650 °C

600 °C

700 °C

X6 CrNi 18 11

0 = 200 MPa

0

100

200

300

400

500

0 1000 2000 3000

NiCr20TiAl

750 °C

650 °C

600 °C550 °C

500 °C

Time , h

Low Cycle Fatigue: Modelling

-400

0

400

-0.008 0 0.008

6

5

43

2

1

Total Strain tot

Str

ess

, M

Pa

-2000

-1000

0

1000

2000

-0.02 -0.01 0 0.01 0.02

1 tot

Tool Steel = 20 °CN=1

Re

Re

/

Total Strain

Str

ess

, M

Pa

-300

-150

0

150

300

-0.008 -0.004 0 0.004 0.008

50 20 10 9 8 7 6 5 4 3 2 1

N=X8CrNi18-10650 °C

Total Strain

Str

ess

, M

Pa

-1x105

0

1x105

2x105

3x105

-300 -150 0 150 300

6

5 4

3

21

2F

i

Stress , MPa

d/d to

t , M

Pa

Low Cycle Fatigue: Life assessment

0.002

0.005

0.01

0.02

0.05

101

102

103

104

105

106

t=0.18 N

- 0.6 + 0.026 N

- 0.14

pl=0.18 N

- 0.6 el=0.026 N

- 0.14

Schwingspielzahl N

Sch

win

gb

reite

de

r D

ehn

un

g

-2000

0

2000

-0.02 0 0.02

-2000

0

2000

-0.02 0 0.02

-2000

0

2000

-0.02 0 0.02

-2000

0

2000

-0.02 0 0.02

,

M

Pa

0

0

el/2

pl

el/2

t

Total strain

Str

ess

,

MP

a

Number of cycles at fracture

Voids: Growth by diffusion and by creep deformation

Void growth by Diffusion

Void growth by creep deformation of the surrounding materials

Wedge type micro-cracks

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

X8CrNiMoNb16-16

X6CrNi18-11

T = 700 °C = 80 MPa

Crack length classF

ract

ion

of

Cra

ck le

ng

th c

lass

X

n

61000 Cracks in X6CrNiMoNb16-1650000 Cracks in X6CrNi18-11

Material: Ni-based superalloy

Thank you for your attention