Stabilized finite element method for heat transfer and...

Post on 01-May-2018

219 views 4 download

Transcript of Stabilized finite element method for heat transfer and...

Stabilized finite element method for heat transfer and fluid flow inside industrial furnaces

April 2009 elie.hachem@mines-paristech.fr

E. Hachem, H. Digonnet and T. Coupez*

Centre de Mise en Forme des Matériaux, Mines Paristech, France

GDR-FSI Fluid-Structure-InteractionApril 23-24, Nantes, France

elie.hachem@mines-paristech.fr

Outline

General context

Stabilized FEM (heat transfer - turbulent flow)

Immersed volume method (monolithic approach)

Numerical examples, results and discussion

elie.hachem@mines-paristech.fr

Bridging the gap: Academic research / industrial applications

Research team: Applied mathematics and Computational mechanics

elie.hachem@mines-paristech.fr

Bridging the gap: Academic research / industrial applications

Acknowledge:EDF - Arcelor Mittal - Snecma - Aubert & Duval - Terreal - Sfarsteel - Manoir Industries

elie.hachem@mines-paristech.fr

Where is a differential operator acting on weighting function

Stabilized Finite elementTransient Convection-diffusion-reaction equation

Variational formulation

Stabilized finite element method for convection dominated problem (high Peclet number)

0

:

(0, )

0 (0, )

( ,0)

t

Find u V such that

u u f in T

u on T

u u in

∈∂ + = Ω×

= ∂Ω×⋅ = Ω

L

: ( )u a u u uκ σ= ⋅∇ −∇ ⋅ ∇ +L

( , ) : ( , ) ( , ) ( , )

( ): ,

h h h h h h h h

h

b u v a u v u v u v

l v f v

κ σ= ⋅∇ + ∇ ∇ +=

1

0 /( ),h h h K his linear forV v H v K= ∈ Ω ∈T

( , ) ( , ) ( )t h h h h h h hu v b u v l v v V∂ + = ∀ ∈

( , ) ( , ) ( , ) ( )Kt h h h h h h K h h h

K

u v b u v u v l v v Vτ∂ + + = ∀ ∈∑ stabR L

stabL ( : )hSUPG a v= ⋅∇

stabL

elie.hachem@mines-paristech.fr

Stabilized Finite elementUsual stability coefficients

Where hK is an appropriate measure of the size of the mesh No time dependency

1. ’: Temporal discretization (e.g. Euler implicit)

2. hK : characteristic dimension of the triangle in the streamline direction

( )( )1 1 11/ , ( , ) ( , ) ( , ) ( , ) ( , )h

h h h

n

n n n

h h h h K h K h h

K

ut u v a u v k u v u a v v f v

tσ τ+ + ++ ∆ + ⋅∇ + ∇ ∇ + ⋅∇ = +

∆∑ R

1

2

24K

K K

ak

h hτ σ

′= + +

S. Micheletti, S. Perotto, M. Picasso, Some remarks on the stability coefficients and bubble stabilization of FEM on anisotropic grids, MOX Report 06, MOX--Modeliug and Scientific Computing, Department of Mathematics "F. Brioschi", Politecnico di Milano, 2002

Volker John, Ellen Schmeyer, Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusionComputer Methods in Applied Mechanics and Engineering, Volume 198, Issues 3-4, 15 December 2008, Pages 475-494

1

2en

iK

i

a Nh

a x

α

α

− ∂= ∂ ∑ ax

aay

h

The support length in the streamline direction

elie.hachem@mines-paristech.fr

Numerical example

An academic test: transient convection

Unstructured coarse gridSkew convection

0u =

0u

n

∂ =∂

0u =

0u

n

∂ =∂

(1,0.7)a =r

Case1. Profile of the solutions at t=0.5, ∆t=10-3: Galerkin (left), SUPG (centre) and SCPG (right)

elie.hachem@mines-paristech.fr

Stabilized Finite elementHeat transfer inside the solid

Thermal shock, instability when

Enriched finite element method + “Time interpolation”

Numerical test

( ) ] [. 0,p n

Tc k T f dans t

tρ ∂ − ∇ ∇ = Ω×

1*

1*

(1 )

(1 )

1

p

h h K

n n

p

K

cw w

t

T T T

ctwhere

t t

ρτ

ξ ξ

ρξ τ

= −

∆ = + −

∆= = − ∆ ∆

%

.K

n

K h

K

k T w dξΩ

+ ∇ ∇ Ω∑∫

800 °°°°C

20 °°°°C

L.P. Franca and C. Farhat, On the limitations of bubble functions, Comput.Methods Appl. Mech. Engrg. 117 (1994) 225-230

Ilinca F. Hétu J-F, Galerkin gradient least-squares formulation for transientconduction heat transfer, Comput. Methods Appl. Mech. Engrg. 191 (2002) 3073-3097

Isaac Harari,Stability of semidiscrete formulations for parabolic problems at small timesteps, Computer Methods in Applied Mechanics and Engineering, Volume 193, Issues 15-16, 16 April 2004, Pages 1491-1516

E. Hachem, H. Digonnet, E. Massoni and T. Coupez, ”Enriched finite element spaces for transient conduction heat transfer” submitted in november 2008 to International Journal for Numerical Methods in Engineering

2 /pt c h kρ∆ <

elie.hachem@mines-paristech.fr

Stabilized Finite element

static condensation

Incompressible Navier-Stokes problem

Variational formulation

Stable Mini-element (Arnold-Brezzi-Fortin) mixed formulation (Stokes problem)

:

( ) 2 ( ) in

0 in

0

t

Find u and p such that

u u u v p f

v

v on

ρ µ ε∂ + ⋅∇ − ∇ ⋅ + ∇ = Ω∇ ⋅ = Ω

= ∂Ω

( )( , ) ( , ) ( , ) ,

( , ) 0

Find v and p such that

a v w b w p c v w f w w V

b v q q Q

+ + = ∀ ∈

= ∀ ∈

( ) ( )( )( )

( , ) : 2 :

( , ) : ,

( , ) : ( , ) ( , )t

where

a v w v w

b v q v q

c v w v w v v w

ηε ε

ρ ρ

=

= − ∇ ⋅= ∂ + ⋅∇

( )( )

( , ) ( , ) ,

( , ) ( , ) ,

( , ) 0

Find v v v and p such that

a v w b w p f w w V

a v w b w p f w w V

b v q q Q

′= ++ = ∀ ∈

′ ′ ′ ′ ′+ = ∀ ∈

= ∀ ∈

%

%

%

%

( )( , ) ( , ) ,

( , ) ( , ) 0

Find v and p such that

a v w b w p f w w V

b v q v q q Q

+ = ∀ ∈

′− − ∇ = ∀ ∈

Build naturally by a matrix form

elie.hachem@mines-paristech.fr

Extension to high Reynolds flow

Two additional contributions:

1) Upwind bubble functions

2) Modelling the fine-scale pressure

( )( )

( , )

( , ); ( , ) ( , )

( , ); ( , ) ( , )

Find v v v and p p p such that w q V Q

A v v p p v q f w

A v v p p v q f w

′ ′= + = + ∀ ∈ ×′ ′+ + =′ ′ ′ ′ ′+ + =

% % % %

( ),h

C h h

K

grad div stabilization term

v wτ∈

+ ∇ ⋅ ∇ ⋅∑144424443T

( ),h

K

K

Upwind stabilization terms

v u wτ∈

+ ⋅∇∑14444244443T

R

A. Masud, R.A. Khurram, A multiscale finite element method for the incompressibleNavier–Stokes equations , Computer Methods in Applied Mechanics and Engineering,Volume 195, (2006)

T.J.R. Hugues et al., The variational multiscale method - a paradigm for computationalmechanics , Computer Methods in Applied Mechanics and Engineering, Nov (1998)

( ):

( , ) ( , ) ( , ) ,

convection term

fine scale equation

a v w b w p c v w v w w V

−′ ′ ′ ′ ′ ′+ + = ∀ ∈% %

14243R

L.P. Franca, A. Nesliturk, On a two-level finite element method for the incompressible Navier–Stokes equations, Int. J. Numer. Methods Engrg. (2001)

R. Codina, Stabilized finite element approximation of transient incompressible flows usingorthogonal subscales, Comput. Methods Appl. Mech. Engrg. (2002)

elie.hachem@mines-paristech.fr

boundary conditions (left) , coarse mesh 64x64(center) , 180x180 fine mesh (right)

Test case: driven cavity

Re=10000

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 0,5 1

y

u x

Re=20000

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 0,5 1

y

u x

Re=10000

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 0,5 1

x

uy

Re=20000

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 0,5 1

x

uy

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 0,5 1

y

u x

Re=33000

Re=50000

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 0,5 1

x

u y

Re=33000

Re=50000

High Reynolds number

Comparisons with the reference

____ coarse mesh ___ fine mesh ◊ reference (601x601)

Velocity profile for

vx along x=0.5

Velocity profile for

vy along y=0.5

elie.hachem@mines-paristech.fr

Test case: driven cavity

High Reynolds number

- Increasing number of vortices

- Apparition of new resolved vortices

Streamline on colored velocity distribution from top-left to bottom-right: Re=1000, 5000, 10000, 20000, 33000 and 50000 with 180×180 mesh

elie.hachem@mines-paristech.fr

Test case: BFS (backward facing step)

Stabilized method using both

isotropic and anisotropic meshes

- High Reynolds number (44000)

- Heterogeneous anisotropic mesh (~19000 nodes)

elie.hachem@mines-paristech.fr

Application: hat-shaped disk

Problem settings: simple

Experimental dataLocation of the sensors

Temperature distribution

elie.hachem@mines-paristech.fr

Heat transfer coefficientsNeumann boundary conditions

4 4

( )

( )

c out

out

k T h T T on

k T T T onσε− ∇ ⋅ = − ∂Ω

− ∇ ⋅ = − ∂Ω

n

n

4 4( , ) ( , ) ( ) ( ) ( )t h h h h h c h out h out h hT v a T v l v h T T d T T d v Vσε∂Ω ∂Ω

∂ + = + − Γ + − Γ ∀ ∈∫ ∫

8 2 4

:

: 5.67 10 . .

:

ch convection heat transfer coefficient

Stephan Boltzmann constant W m K

emissivity

σε

− −−

elie.hachem@mines-paristech.fr

Immersed volume method

Immersed object inside an enclosure (10x10x15) Anisotropic mesh adaptation

air

Solid

Inconel 718

elie.hachem@mines-paristech.fr

Level-set function

Anisotropic mesh adaptation

Mixing materials properties

Immersed volume method

E. Hachem, T. Kloczko, E. Massoni, T. Coupez, ” Immersed volume technique for

solving natural convection, conduction and radiation of a hat-shaped disk inside

an enclosure” preprint for International Journal for Numerical Methods in

Engineering 2009

2

2 2

s / 2

( ) s / 2

I i e

M NB I i e

e

ε α

ε ε α

>=

− + <

2

T

where Bα α

α∇ ⊗ ∇=

0

( ) 0

0

fluid

interface

solid

si x

x si x

si x

α> ∈ Ω= ∈ Γ> ∈ Ω

1

1 1( ) 1 sin

2

0

if e

H if ee e

if e

αα παα α

πα

> = + + ≤

< −

: ( ) (1 ( ))fluide solideexample H Hρ ρ α ρ α= + −

air

solid

air

solid

elie.hachem@mines-paristech.fr

Mixing thermo-physical propertiesZero isovalues

Results

Immersed volume methodMixing laws Anisotropic mesh adaptation

1

( ) (1 ( ))

air solide

H Hk

k k

α α−

−= +

1

/ (1 ) /air airair solide

tot tot

m mk k k

m m

= + −

( ) (1 ( ))air solidek H k H kα α= + −

.

( ) .

tot element

air element

m V

m H V

ρα ρ

== i.e. Density distribution along the interface

elie.hachem@mines-paristech.fr

Grid inside a furnace

Anisotropic mesh adaptation

elie.hachem@mines-paristech.fr

2D example

Thermal conductivity: air (0.02) , solid (175),

No interface Refined interfaceExact interface

air solidinterface

elie.hachem@mines-paristech.fr

Transient conduction :

Conjugate conduction-radiationConjugate convection-conduction

0.1%0.14%0.15%Appropriate law

1.73%4.1%6.4%Simple law

Adapted interfaceExact interfaceNo interface

t=0s t=1000s t=∞

Tair = 20°C Tsolid = 400°C

2D example

elie.hachem@mines-paristech.fr

Direct simulation air-solid

Coupled problem for air cooling inside an enclosure : (illustration of the method)

elie.hachem@mines-paristech.fr

- Velocity 2m/s

Outlet

Inlet

-Velocity vectors at different time step

2D heating ingot : (illustration of the method)

Direct simulation air-solid

elie.hachem@mines-paristech.fr

3D finite element solution:

Appropriate mixing law

Immersed volume methodVolumetric radiative source termStabilized finite element method

Magnified cutting plane:

Hat-shaped disk - Snecma

T: temperature G: radiation S: radiative source term!!!

elie.hachem@mines-paristech.fr

Hat-shaped disk - Snecma

Snapshot at different time stepStreamline and temperature distribution

elie.hachem@mines-paristech.fr

Comparisons with experimental data

Numerical resultssensors

Old results Recent results

elie.hachem@mines-paristech.fr

Industrial furnace: Aubert & Duval

Problem set up

Multidomain applicationAnisotropic adaptation

Coupled problemComplex geometryAdditional Turbulence models:

Standard & Low-Reynolds k-ε modelSmagorinsky LES model

Pro

blem

set

up

3 ingots10 burners1 outlet (in the top-center)2 doorsAveraged velocity (40m/s)Maximum temperature 800°C

elie.hachem@mines-paristech.fr

Industrial furnace: Aubert & DuvalT

emp

erat

ure

evo

luti

on

insi

de

the

furn

ace

Computation issuesHigh Reynolds numberParallel computation: 32 cores3 days of computation for 4 minutes of physical time~800000 elements

elie.hachem@mines-paristech.fr

Industrial furnace: Aubert & Duval

Computation issuesHigh Reynolds numberParallel computation: 32 cores3 days of computation for 4 minutes of physical time~800000 elements

elie.hachem@mines-paristech.fr

Thank you for your attention

ConclusionFully fluid-solid coupling simulationImmersed methodAnisotropic adaptation

Stabilized FEMTurbulent flows

Industrial applications

On going workTime reduction

A posteriori error driven anisotropic adaptation

Thermo-mechanical deformationMonolithic approach for FSI

Free surface turbulent flowG. François, E. Hachem, T. Coupez, ” Méthodes éléments finis pour le

remplissage à haut nombre de Reynolds” CFM, Marseille, 2009

elie.hachem@mines-paristech.fr

Coupled LES with Levelset

Experimental validation :

G. François, E. Hachem, T. Coupez, ” Méthodes éléments finis pour le

remplissage à haut nombre de Reynolds” CFM, Marseille, 2009