Spin Physics at JLab · • Deep Inelastic Scattering • with polarized electron beams • and...

Post on 21-Feb-2021

3 views 0 download

Transcript of Spin Physics at JLab · • Deep Inelastic Scattering • with polarized electron beams • and...

Spin Physics at JLab

Seonho ChoiSeoul National University

June 20, 2011

PacSPIN 2011 Cairns, Australia

Contents

• QCD and Spin

• Inclusive DIS

• Semi-Inclusive DIS

• Some results from Jefferson Lab

• Future - Upgrade and EIC

• Summary

Quarks, Gluons & QCD

• Asymptotic freedom to Non-perturbative region

• One of the major challenges in current nuclear physics

• Spin structure is one of important tests.

Nucleon Spin Structure

• Explaning nucleon spin in terms of quarks and gluons (QCD)

• Nucleon spin is 1/2

• De-composition is not trivial

Nucleon Spin Pizza

Ji Jaffe & Manohar

Only common to both decompositions!

More on the decomposition,Cho’s Talk

Today 11:40

Nucleon Spin Structure

• Explaining nucleon spin in terms of quarks and gluons (QCD)

• Nucleon spin is 1/2

• De-composition is not trivial

• ~30% from quark spins

• Little or no polarized gluons

Solving the Puzzle

• Spin structure functions g1 and g2

• Electron scattering on polarized targets (p, d, 3He)

• Gluon polarization

• Direct measurement from polarized pp scattering (PHENIX, STAR)

• QCD evolution from spin structure functions

• Orbital Angular Momentum (OAM)

• Partly from Generalized Parton Distributions

Related Talks

• Fields (Next talk) OAM at RHIC

• Okada (11:00) Delta G at PHENIX

• Wakamatsu (12:20) OAM extraction

Polarized DIS

• Deep Inelastic Scattering

• with polarized electron beams

• and polarized targets

• Probes spin states of the quarks

• Spin structure functions, g1 and g2

• 2 different target polarization directions

Spin Structure Functions

• g1 : easy to understand, relatively easy to measure

• g2 : more complex

• g2 = 0 in naive quark model

• sensitivity with target polarization perpendicular to beam polarization

g2 and Higher Twists

• Decomposition of g2

a twist-2 term (Wandzura & Wilczek, 1977):

a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 1992):

Twist -2 Twist -3+1

+1/2

0

-1/2

Transversity !"#correlations

!" #$%&'(#)*+,-(.$&/.))0-#12.$3

45#6&730)&,).(8&90012$!:&;0<8.)1&;0<3:&=> !"4($0&?@:&"AAB

g2 and quark-gluon correlations

• a twist-2 term (Wandzura-Wilcek)

• a twist-3 term with a suppressed twist-2 piece

Transversity

qg correlations

Color Polarizability d2• 2nd moment of g2-g2

WW

d2: twist-3 matrix element

d2 and g2-g2WW: clean access of higher twist (twist-3) effect: q-g correlations

Color polarizabilities χΕ,χΒ are linear combination of d2 and f2 Provide a benchmark test of Lattice QCD at high Q2

Avoid issue of low-x extrapolation

Relation to Sivers and other TMDs?

d2(Q2)

very prelimGREEN: E97-110. (Hall A, 3He)

RED : RSS. (Hall C, NH3,ND3)

BLUE: E01-012. (Hall A, 3He)

Proton

Neutron

“d2n” completed in Hall A,more details in Chen’s talk

3-D Description in Momentum Space

• Transverse Momentum-dependent parton Distributions (TMD’s)

!"#$% &'(#$)*#+)',

-, .'(#$)*/0 1',2)+"0),#((3 .'(#$)*/0 4$#,56/$5/(3 .'(#$)*/0

!"#$%&'

(&$)*+,)-+&'

.

/

0

7(( 1/#0),2 48)5+ 49:5

! ;4 <

!; <

"; <

";4 <

#;1 <

#; <

#;4 <

#;4 <

4$#,56/$5)+3

='/$ 9"(0/$

.$/+*/('5)+3>)6/$5

?/()@)+3

!"#$%&' 12+'3")*4 12+'

!"#$% &'(#$)*#+)',

-, .'(#$)*/0 1',2)+"0),#((3 .'(#$)*/0 4$#,56/$5/(3 .'(#$)*/0

!"#$%&'

(&$)*+,)-+&'

.

/

0

7(( 1/#0),2 48)5+ 49:5

! ;4 <

!; <

"; <

";4 <

#;1 <

#; <

#;4 <

#;4 <

4$#,56/$5)+3

='/$ 9"(0/$

.$/+*/('5)+3>)6/$5

?/()@)+3

!"#$%&' 12+'3")*4 12+'

Accessing TMD’s!""#$$ %&'$ ()*+,-) ./*0 1*+"#$$#$

Partonic scattering amplitude

Fragmentation amplitude

Distribution amplitude

proton

lepton lepton

pionproton

proton lepton

antilepton

Drell-Yan

!"#$%&'(

)"&#

EIC

SIDIS

electron

positron

pion

pion

e–e+ to pions * *+,-.-,/ +.0/h h

!""#$$ %&'$ ()*+,-) ./*0 1*+"#$$#$

Partonic scattering amplitude

Fragmentation amplitude

Distribution amplitude

proton

lepton lepton

pionproton

proton lepton

antilepton

Drell-Yan

!"#$%&'(

)"&#

EIC

SIDIS

electron

positron

pion

pion

e–e+ to pions * *+,-.-,/ +.0/h h

!""#$$ %&'$ ()*+,-) ./*0 1*+"#$$#$

Partonic scattering amplitude

Fragmentation amplitude

Distribution amplitude

proton

lepton lepton

pionproton

proton lepton

antilepton

Drell-Yan

!"#$%&'(

)"&#

EIC

SIDIS

electron

positron

pion

pion

e–e+ to pions * *+,-.-,/ +.0/h h

!""#$$ %&'$ ()*+,-) ./*0 1*+"#$$#$

Partonic scattering amplitude

Fragmentation amplitude

Distribution amplitude

proton

lepton lepton

pionproton

proton lepton

antilepton

Drell-Yan

!"#$%&'(

)"&#

EIC

SIDIS

electron

positron

pion

pion

e–e+ to pions * *+,-.-,/ +.0/h h

SIDIS

e+e-

Drell-Yan

SIDIS!""#$$%&'()*+%,-$)(-./)-*+$%)0(*/10%2#3-4

5+"6/$-7#%,52

!!!"#$%&'()*

!!!")*

!!!"$+',-(

!!!$($',-(

$',-(*

!!!"$.',-(*

!!!$.%&'(

!!!/$)(.

$%&'(.

.

$+',-(

$',-(

$',-(

$.',-(

$.%&'(

0

.

.

.

.

Sh

Sh

Sh

Sh

h

h

LTSheT

LLeL

UTSh

ULSh

UTShT

ULhL

UUh

TUU

hhS

FS

FS

F

F

FS

FS

F

F

yxyQdPdzddxdyd

d

!"#$%&'()*+

,$%&'()*+-&'.*/

,$%&'()*+0*&1&"+-&'.*/

!2! !-" #$%&'( )*+$%,-$(,*./ "" 0'$1 )*+$%,-$(,*.

0$*' 34%+*'

5(6*'7

-'&"76*'7(/8

,'*/)*%$7(/8

!""#$$%&'()*+%,-$)(-./)-*+$%)0(*/10%2#3-45+"6/$-7#%,52

!!!"#$%&'()*

!!!")*

!!!"$+',-(

!!!$($',-(

$',-(*

!!!"$.',-(*

!!!$.%&'(

!!!/$)(.

$%&'(.

.

$+',-(

$',-(

$',-(

$.',-(

$.%&'(

0

.

.

.

.

Sh

Sh

Sh

Sh

h

h

LTSheT

LLeL

UTSh

ULSh

UTShT

ULhL

UUh

TUU

hhS

FS

FS

F

F

FS

FS

F

F

yxyQdPdzddxdyd

d

!"#$%&'()*+

,$%&'()*+-&'.*/

,$%&'()*+0*&1&"+-&'.*/

!2! !-" #$%&'( )*+$%,-$(,*./ "" 0'$1 )*+$%,-$(,*.

0$*' 34%+*'

5(6*'7

-'&"76*'7(/8

,'*/)*%$7(/8

!""#$$%&'()*+%,-$)(-./)-*+$%)0(*/10%2#3-45+"6/$-7#%,52

!!!"#$%&'()*

!!!")*

!!!"$+',-(

!!!$($',-(

$',-(*

!!!"$.',-(*

!!!$.%&'(

!!!/$)(.

$%&'(.

.

$+',-(

$',-(

$',-(

$.',-(

$.%&'(

0

.

.

.

.

Sh

Sh

Sh

Sh

h

h

LTSheT

LLeL

UTSh

ULSh

UTShT

ULhL

UUh

TUU

hhS

FS

FS

F

F

FS

FS

F

F

yxyQdPdzddxdyd

d

!"#$%&'()*+

,$%&'()*+-&'.*/

,$%&'()*+0*&1&"+-&'.*/

!2! !-" #$%&'( )*+$%,-$(,*./ "" 0'$1 )*+$%,-$(,*.

0$*' 34%+*'

5(6*'7

-'&"76*'7(/8

,'*/)*%$7(/8

Separation via Angular Dependence!"#$%$&'()*(+*,(--')./*!'0"%.*$)1*#%"&2"-(3'&4*"++"3&.*&5%(675*$)76-$%*1"#")1")3"

!" # $

%&'" $ %&'" $

%&'"( $

l lUT h S

h SSiverCollins

Pretzelosi

UT

tyU

sUT h S

h ST

N NAP N

A

ANA

!

! !

!

! !

%&'" $

%&'"( $

%&'" $Co

PretzelosityU

SiversUT

llins

T h S T

h S

UT

UT h S

TU

UT

TA

H

f

A

D

A h H

h

)*+*),))-%,./0/'.,1',23+,456&578/%,"9#,:;#,<,5'.,=>$

?56@/,5'@A856,B14/65@/,5'.,06/B&%&1',C/5%A6/C/'D,1E,5%FCC/D6&/%,

&',23+,0G5%/,%05B/,&%,/%%/'D&58H,

d2kT

PDFs q(x), Δq(x)…

d2rT Spin and longitudinal momentum correlations with kT and rT lead to observable effects in exclusive and semi-inclusive processes

TMD PDFs q(x,kT), Δq(x,kT)…

GPDs H(x,rT), H~(x,rT)…

Structure of the Nucleon

d2k T

Wpu(k,rT) “Mother” distributions (Wigner, GTMDs,..)

d2r T

The Machine

Jefferson Labat a Glance

• Electron linear accelerator

• Beam energy up to ~ 6 GeV

• 12 GeV upgrade in progress

• Beam polarization over 80%

• 100% duty cycle, continuous beam

• 3 Experimental Halls: A, B and C

Jefferson Lab

Jefferson Lab

An aerial view of the recirculating linear accelerator

and 3 experimental halls.

Cryomodules in the accelerator tunnel

Superconducting radiofrequency (SRF) cavities undergo vertical testing.

CEBAF Large Acceptance Spectrometer (CLAS) in Hall B

Inclusive DIS at JLab

Valence A1p and A1n

Hall B CLAS, Phys.Lett. B641 (2006) 11 Hall A E99-117, PRL 92, 012004 (2004) PRC 70, 065207 (2004)

Effect of OAMPolarized DIS and Nucleon Spin Structure

H. Avakian, S. Brodsky, A. Deur, F. Yuan, Phys. Rev. Lett.99:082001(2007)

Figure credit: A. Deur

First Moments of g1p and g1n

EG1b, arXiv:0802.2232 EG1a, PRL 91, 222002 (2003)

E94-010, from 3He, PRL 92 (2004) 022301 E97-110, from 3He, EG1a, from d-p

Test fundamental understanding ChPT at low Q2, Twist expansion at high Q2, Future Lattice QCD

Precision Measurement of g2n

• Measure higher twist → quark-gluon correlations.• Hall A Collaboration, K. Kramer et al., PRL 95, 142002 (2005)

SANE at Hall-C

• Beam: polarized electron beam (Jefferson Lab) at 4.7 and 5.9 GeV

• Target: Polarized NH3 target

• Polarization: ~67%

• Orientation: parallel (0o) or “perpendicular” (80o)

• Scattering angle: 40o

• Detectors: BETA and HMS of Hall-C

Setup

SetupTargetPolarized NH3

with 5T field

Setup

BeamlineChicaneHe bag

SetupElectron ArmTrackerCerenkovLuciteBigCal

Setup

HMSPacking fractionsMonitoring

Big Electron Telescope Array

Big Electron Telescope Array

Forward Tracker

Big Electron Telescope ArrayCerenkov

Big Electron Telescope ArrayLucite Hodoscope

Big Electron Telescope ArrayBigCal

Analysis in Progress0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

g1p g2ww AAC g1p_TM AAC g2WW_TM

0.25 0.35 0.45 0.55 0.65 0.75 0.85-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

AAC g1p_TM AAC g2WW_TM SANE g1 SANE g2

PRELIMIN

ARY

SIDIS at JLab

SIDIS at Hall-A!"#$%&'()'*'%&+,-./0-12%

• !"#$%&'() *+( ,$%-(./ 0 123

4&.5 6($7/ 4"%#) %(8"%)

• !"#$%&'() 9#(8.%": ;($7

– !"#$%!"#$%&'$.&":– <$=. <#&>>&:- $. &#'(– ))* ?(@(# A5$%-( B=C77(.%C

8":.%"##() 6C ":#&:( D(() 6$8E

• ;&-;&.( $. *2F $= 9#(8.%": B%7– !" G 2HI J KHK L(MN!

• +OP? $. Q1F $= +$)%": B%7– !# G KH*R L(MN!

+,

-./0%)12/340.5367*822.3%9%:10;51<=

>?04<1@456*1<4513

3455#$4.#2/41%/16578-9%:#%#18%:#4%;.47,9%#2%<=>

Neutron  Single-­‐Spin  AsymmetryPreliminary   Collins

asymmetries  are  not  large,  except  at  x=0.34

Siversagree  with  global  fit,  and  light-­‐cone  quark  model.      

favors  negaEve.  

u-­‐quark  in  neutron  favors    negaEve.by  SU(2):d-­‐quark  in  proton  favors  nega9ve.

36

• Worm-­‐gear  TMD,  g1T  ⊗  D1

–Dominated  by  L=0  (S)  and  L=1  (P)  interference.

• Consist  with  model  in  sign.suggest  a  larger  asymmetry.

Neutron  Double-­‐Spin  Asymmetry  ALT

Preliminary  

37

More details on Spin Physics from Hall-AChen’s Talk

Thursday 16:20

CLAS configurations

π−

e

π+

ep→e’πX

Polarizations:Beam: ~80%NH3 proton 80%,ND3 ~30%HD (H-75%,D-25%)

1) Polarized NH3/ND3 (no IC, ~5 days)2) Unpolarized H (with IC ~ 60 days)3) Polarized NH3/ND3 with IC 60 days

10% of data on carbon 4) Polarized HD-Ice (no IC, 25 days)

Unpolarized, longitudinally and transversely polarized targets

Unpolarized and longitudinally polarized targets

0.05 K0.6 K

1 K4K Inner CalorimeterHD-Ice

Scattering of 5.7 GeV electrons off polarized proton and deuteron targets

SIDIS with JLab at 6 GeV

DIS kinematics, Q2>1 GeV2, W2>4 GeV2, y<0.85 0.4>z>0.7, MX

2>2 GeV2

2

eπX

Large PT range and full coverage in azimuthal angle φ crucial for studies

A1 PT-dependence in SIDIS

M.Anselmino et al hep-ph/0608048

π+ A1 suggests broader kT distributions for f1 than for g1

π- A1 may require non-Gaussian kT-dependence for different helicities and/or flavors

μ02=0.25GeV2

μD2=0.2GeV2

0.4<z<0.7

arXiv:1003.4549

A1

A1 PT-dependence

CLAS data suggests that width of g1 is less than the width of f1

AnselminoCollins

Lattice

PT

PT

arXiv:1003.4549

~10% of E05-113 data

Longitudinal Target SSA measurements at CLAS

p1sinφ+p2sin2φ

0.12<x<0.48

Q2>1.1 GeV2

PT<1 GeV

ep→e’πX

W2>4 GeV2

0.4<z<0.7

MX>1.4 GeV

y<0.85

p1= 0.059±0.010p2=-0.041±0.010

p1=-0.042±0.015p2=-0.052±0.016

p1=0.082±0.018p2=0.012±0.019

CLAS-2009 (E05-113)CLAS PRELIMINARY

CLAS-2000

Data consistent with negative sin2φ for π+

JLab 12GeV UpgradeJLab Upgrade to 12 GeV

CHL-2

Enhance equipment in existing halls

Add new hall

!"#$%&'()*"+&"'$&,$-.+),/$0,."+1(.&),$-"(.)+2

3+"(&'&),$4"1'5+"6",.$7+),.&"+8-"1+(9$:)+$,"#8$";).&($<=%$'.1."'$1,>$61.."+$

Add new hall

12 GeV Science Program

• The physical origins of quark confinement (GlueX, meson and baryon spectroscopy)

• The spin and flavor structure of the proton and neutron (PDF’s, GPD’s, TMD’s)

• The quark structure of nuclei

• Probe potential new physics through high precision tests of the Standard Model

Projections for JLab at 12 GeV

A1n

A1p

Solenoidal Detector for SIDIS (Hall-A)

!"#$

%$&'()*(+,-*./&0*123*456,-&7*89:;<

!"#$%&$'()&*+",&-./&0($&102102&304()"5&6-./&5,'*(&,)2)7

89:)2+3)("&8;<=;>=>>?

Projected Data!"#$%&'%( )*'*• +#'*, -.// 0123 12 45 !' *2( 6 7#" --89:9 ;%< 0%*=:• 6 "*2>%3 7"#= /:? @ /:A5 #2,B * 3C0 "*2>% #7 --89:9 ;%< 3D#E2 D%"%:

For more details,Meziani’s Talk

Thursday 17:00

Summary• Polarized DIS

• Extensive measurements for non-perturbative region

• longitudinal target: Halls A, B and C

• transverse target: Halls A and C

• SIDIS

• Start of the program at 6 GeV

• More to come after 12 GeV upgrade

• GPD’s

• Towards full understanding of nucleon structure

• EIC will be an ideal upgrade to the next frontier of QCD