Solar Power for Saipan - Incredibly Cost-Effective

Post on 15-Apr-2017

4.591 views 2 download

Transcript of Solar Power for Saipan - Incredibly Cost-Effective

S O L A R F O R S A I PA NA N I N C R E D I B LY C O S T- E F F E C T I V E E N E R G Y P O L I C Y

John Farrell Director of Democratic Energy

May 20, 2014

COSTLY IMPORTED POWER

Fuel cost: $60 million per year (2010)

$1100 per person per year

Commonwealth of the Northern Mariana Islands Initial Technical Assessment Report, NREL 2011

C O S T O F E L E C T R I C I T Y ( P E R K I L O W AT T- H O U R )

$0.00

$0.05

$0.10

$0.15

$0.20

$0.25

$0.30

$0.35

Residential Commercial

$0.33

$0.26

Diesel

L O W E S T I M AT E

Source: CUC rates

S O L A R S AV I N G S

C O S T O F E L E C T R I C I T Y ( P E R K I L O W AT T- H O U R )

$0.00

$0.05

$0.10

$0.15

$0.20

$0.25

$0.30

$0.35

Residential Commercial Solar $4/W

$0.33

$0.26

C O S T O F E L E C T R I C I T Y ( P E R K I L O W AT T- H O U R )

$0.00

$0.05

$0.10

$0.15

$0.20

$0.25

$0.30

$0.35

Residential Commercial

$0.19

L O W E S T I M AT E

Customers save at least $0.07 to $0.14 per kWh with solar

C O S T O F E L E C T R I C I T Y

( P E R K I L O W AT T-H O U R )

$0.00

$0.05

$0.10

$0.15

$0.20

$0.25

$0.30

$0.35

CUC diesel cost

$0.30

The utility saves $0.30 for every kWh avoided with solar

KEMA Renewable Energy Integration Study, 2013

For every customer that installs 5 kW of solar…

Saves $1,600 per year Saves $350 per year

Net metering @ $0.26 per kWh

For every customer that installs 500 kW of solar…

Saves $195,000 per year Breaks even

Feed-In Tariff@ $0.30 per kWh

N O R E A S O N T O W A I T

KEMA Renewable Energy Integration Study, 2013

U T I L I T Y ( C U C ) C O S T S AV I N G S F R O M S O L A R + W I N DM

illio

n d

olla

rs

$0

$3

$6

$9

$12

% of peak energy use from solar

20% 40% 69%

$11.9 million

$6.8 million

$3.3 million

2 0 % R E N E W A B L E E N E R G Y

Solar 19%

Wind 1%

Diesel 80%

Technology Capacity

Solar + Wind 7,000 kW

Energy Storage 3,400 kW

Annual Balance

Renewables Cost -$2.1 million

Fuel + Operations Cost Savings

$2.8 million

Net Benefit $0.7 million

See final slide for assumptions

4 0 % R E N E W A B L E E N E R G Y

Solar 38%

Wind 2%

Diesel 60%

Technology Capacity

Solar + Wind 14,000 kW

Energy Storage 6,800 kW

Annual Balance

Renewables Cost -$4.2 million

Fuel + Operations Cost Savings

$5.6 million

Net Benefit $1.4 million

See final slide for assumptions

Technology Capacity

Solar + Wind 24,150 kW

Energy Storage 11,700 kW

6 9 % R E N E W A B L E E N E R G Y

Solar 66%

Wind 4%

Diesel 31%

Annual Balance

Renewables Cost -$7.3 million

Fuel + Operations Cost Savings

$9.7 million

Net Benefit $2.4 million

See final slide for assumptions

N O T T H E F I R S T

Energy Storage: The Next Charge for Distributed Energy

(2014, ILSR)

K A U A’ I C O O P E R AT I V E E L E C T R I C I T Y, %

R E N E W A B L E

0%

10%

20%

30%

40%

50%

2006 2013 2015

S O L A R S E R V I N G H A L F O F D AY T I M E D E M A N D

( 2 0 1 5 )

Other 50%

Solar 50%

Energy Storage: The Next Charge for Distributed Energy

(2014, ILSR)

K I U C E N E R G Y M I XEnergy Storage: The Next

Charge for Distributed Energy (2014, ILSR)

2 0 1 3

Non-renewable 85%

3%

Utility solar 3%Hydro

9%

2 0 1 3 & U N D E R D E V E L O P M E N T

Biomass 12%

Non-renewable 58%

Customer solar 6%

Utility solar 14%

Hydro 9%

Customer solar

6 MW of battery storage installed at substations

Energy Storage: The Next Charge for Distributed Energy

(2014, ILSR)

S U R M O U N TA B L E B A R R I E R S

S U R M O U N TA B L E B A R R I E R S

≤?

1. A Limit on Local Power Generation!Utilities always want local power generation to be less than local minimum electricity demand so that electricity will not flow out of neighborhoods and back onto the grid.*!!2. A Guesstimate of Minimum Demand !Whoops! Utilities assume minimum demand is about 30% of peak demand, because they don’t measure minimum demand.!!3. An Arbitrary Safety Margin!Utilities take this 30% threshold and divide by 2 to get a 15% cap on local solar.!!!*Also addressed with 2-way electrical equipment

How Local Solar Gets Capped

15%

Peak use

“Minimum”(30%)

÷2

Percent of peak power allowed from local solar

Default cap of

÷2

!1. A Daytime Minimum!How much solar power is produced at 4 AM? None. But that’s the time of day utilities used for their minimum demand calculation.!Hawaii solar advocates negotiated a change: to estimate minimum demand when the sun is up (Sundays at noon). !Even though utilities maintain the arbitrary “division by 2” safety margin, this change could allow nearly twice as much local solar on the grid.

How States Can Raise the Cap (Hawaii)

“Daytime min.”

÷2

~25%

Hawaii’s Update (2011) Hawaii estimates the minimum demand during daytime.

Cap is raised toPercent of peak power allowed from local solar

Daytime minimum

~50%Cap is raised to

Percent of peak power allowed from local solar

÷

California’s Update (2012) Measured daytime demand

No “division by 2”

How States Can Raise the Cap (California)!1. A Measured Daytime Minimum!Utilities must actually measure the minimum demand on a power line between 9 AM and 4 PM and no longer use peak demand as a proxy.!2. No “Division by 2”!Utilities can’t arbitrarily divide the cap by 2, now that the power line capacity is actually measured.!The result could nearly triple the original 15% cap on local solar power.

2

S O U R C E S

• Renewable Energy Integration Study (KEMA, 2013): http://cl.ly/0c0e0E0E0G05

• Northern Mariana Islands Quick Facts (EIA, 2014): http://1.usa.gov/1giOmLV

• Commonwealth of the Northern Mariana Islands Initial Technical Assessment Report: http://cl.ly/0D1r370i3t3y

• Energy Storage: The Next Charge for Distributed Energy (ILSR, 2014): http://bit.ly/1sPXFTV jfarrell@ilsr.org

C O S T A N A LY S I S A S S U M P T I O N S

• Installed costs

• Solar: $3200/kW; Wind: $4000/kW

• Storage: $480/kW + $565/kWh

• Finance terms: 6% interest over 20 years

• Installed capacity

• Solar = 95% of total nameplate capacity

• Storage

• kW = 50% of solar nameplate + 20% of wind nameplate

• kWh = time to allow diesel plant to ramp @ 30 kW per second

• Avoided energy costs: $0.30/kWh

Most assumptions from KEMA Renewable Energy Integration Study, 2013; those in blue from ILSR