Social threshold aggregations Fuad T. Aleskerov, Vyacheslav V. Chistyakov, Valery A. Kalyagin Higher...

Post on 11-Jan-2016

214 views 0 download

Transcript of Social threshold aggregations Fuad T. Aleskerov, Vyacheslav V. Chistyakov, Valery A. Kalyagin Higher...

Social threshold aggregations

Fuad T. Aleskerov,

Vyacheslav V. Chistyakov,

Valery A. Kalyagin

Higher School of Economics

2

Examples

• Apartments

• Three students – whom we hire

• Refereeing process in journals

3

- alternatives ,

, - agents,

- set of ordered grades

with .

An evaluation procedure

assigns to and a grade

, i.e.,

where for each is the set of all -dimentional vectors with components from

X 2, 1,2,...,X N n 2n 1,2,...,M m 1 2 ... m

3m:E X N M

i N( , )ix E x i M

x X

n

1ˆ ( , ) ,..., nnX x x E x x x M

1,..., :nn iM x x x M i N

M

4

We assume , so

the number of grades in the vector

Note that

Let

ˆ nX X M

1ˆ iff ,..., with nn ix X x x x x M x M

( )jv x j 1,... :nx x x

( ) : .j iv x i N x j

0 ( ) for all and andjv x n x X j M

1 21

( ) ( ) ( ) ... ( ) for all .m

j mj

v x v x v x v x n x X

01

( ) ( ) if 1 and ( ) 0k

k jj

V x v x k m V x

5

Social decision function

Social decision function on

satisfying

(a) iff is socially (strictly) more

preferable than , and

(b) iff and are socially

indifferent

X: X R

( ) ( )x y

x( ) ( )x y y

xy

6

Axioms( .1) (Pairwise Compensation): if , and

( ) ( ) for all 1 1, then ( ) ( ).

( .2) (Pareto Domination): if , and ,

then ( ) ( ).

( .3) (Noncompensatory Threshold and Contraction):

f

j j

A x y X

v x v y j m x y

A x y X x y

x y

A

1 1

2 1

or each natural number 3 the following

condition holds:

( .3. ) if , , ( ) ( ) for all 1

(if , this condition is omitted),

( ) 1 ( ) ( ),

( ) and ( )

j j

m k m k m k

m k m k

k m

A k x y X v x v y j m k

k m

v x v y n V y

V x n V y

( ) , then ( ) ( )mv y n x y

7

The binary relation on

is said to be the lexicographic ordering if, given

and from , we have:

in iff there exists an such that

for all (with no condition if ) and

Construction of social ordering – threshold rule

compare vectors and

k

kR

kR

kR

1,..., ku u u 1,..., kv v vu v 1 i k j ju v

1 1j i 1i i iu v

x y

1 1

1 1 2 2

if ( ) ( )

if ( ) ( ) compare ( ) and ( )

...

v y v x xRy

v y v x v x v y

8

Theorem:

A social decision function on X satisfies the axioms Pairwise Compensation, Pareto Domination, Noncompensatory Threshold and Contraction iff its range is the set of binary relations on X generated by the threshold rule.

9

Let be a set of three different

alternatives, a set of

voters and the set of grades

(i.e., ).

, ,X x y z

1,...,13N 13n 1,2,3M

3m

3 voters 4 voters 6 voters

Simple Majority Rule Bord

a Threshold

ran

k

3

x x x y zy

y

2

1

y x

z

z

x

yz

z y z x

10

The dual threshold aggregation

1 1

Compare ( ) and ( ).

If ( ) ( ), then

If ( ) ( ),

then compare ( ) ( ), etc.

m m

m m

m m

m m

v x v y

v x v y xRy

v x v y

v x v y

Manipulability of Threshold Rule

• Computational Experiments

• Multiple Choice Case

• Several Indices of Manipulability

11

Indices

- better off- worse off- nothing changed

)1!()!(1

)!(1

1

mnmI

n

ijni

mj

n

ij

ij

ij0

1!0 mijijij

Applications

• Development of Civil Society in Russia

• Performance of Regional Administrations in Implementation of Administrative Reform

15

References• Aleskerov, F.T., Yakuba, V.I., 2003. A method for aggregation of rankings of special form. Abstracts of

the 2nd International Conference on Control Problems, IPU RAN, Moscow, Russia.

• Aleskerov, F.T., Yakuba, V.I., 2007. A method for threshold aggregation of three-grade rankings. Doklady Mathematics 75, 322--324.

• Aleskerov, F., Chistyakov V., Kaliyagin V. The threshold aggregation, Economic Letters, 107, 2010, 261-262

• Aleskerov, F., Yakuba, V., Yuzbashev, D., 2007. A `threshold aggregation' of three-graded rankings. Mathematical Social Sciences 53, 106--110.

• Aleskerov, F.T., Yuzbashev, D.A., Yakuba, V.I., 2007. Threshold aggregation of three-graded rankings. Automation and Remote Control 1, 147--152.

• Chistyakov, V.V., Kalyagin, V.A., 2008. A model of noncompensatory aggregation with an arbitrary collection of grades. Doklady Mathematics 78, 617--620.

• Chistyakov V.V., Kalyagin V.A. 2009. An axiomatic model of noncompensatory aggregation. Working paper WP7/2009/01. State University -- Higher School of Economics, Moscow, 2009, 1-76 (in Russian).

16

Thank you

17