Sistemas de recomendación & Big Data

Post on 10-Apr-2017

650 views 1 download

Transcript of Sistemas de recomendación & Big Data

Sistemas de Recomendacion

● “We are leaving the age of information and entering the age of recommendation.”

Chris Anderson, The Long Tail

• The Web, they say, is leaving the era of search and entering one of discovery. What’s the difference? Search is what you do when you’re looking for something. Discovery is when something wonderful that you didn’t know existed, or didn’t know how to ask for, finds you."

Jeffrey O'Brien, Fortune Magazine

● Abundancia de informacion● costo computacional bajo

Valor de las recomendaciones

• 65% del trafico de Netflix.

• 38% del trafico de google news.

• 35% de las ventas en Amazon.

• 40% del tráfico de youtube.

DefiniciónEstimar una funcion de utilidad que modelala preferencia de un usuario sobre un ítem.

Que vamos a usar para la estimación?

● comportamiento de los usuarios.● descripción de los items.● contexto.● etc.

Roadmap

Recomendaciones basadas en contenido● Se construyen perfiles de usuarios e items.● Usuario: rango etario, género, geografía, intereses,

segmentos, keywords representativas, etc.● Producto: nombre, descripción, autor, categoría, tags,

geografia, keywords representativas, etc.● En caso de no existir los perfiles se infieren usando

técnicas como clustering o clasificadores.

Matching de usuarios e items por keywords:

● Usando técnicas de information retrieval puedo obtener el texto más relevante de un documento. (Tf-IDF)

● Por cada ítem que el usuario visita obtengo las keywords más relevantes, armó un conjunto con todos estos términos.

● Cuando tengo que recomendar un item a un usuario calculo la distancia entre este conjunto representativo y cada uno de los ítems del inventario usando distancia del coseno como metrica.

1-Texto relevante● Por cada item (documento) obtengo las keywords mas

importantes usando TF-IDF.● Remover stopwords.

2-Historial de navegación1. Por cada usuario registramos los ítems que visito2. Extraemos las keywords relevantes.3. Armamos un perfil de usuario con estas keywords más

relevantes

3-Similitud de texto1. Calculamos la distancia del coseno entre cada item y el

usuario testigo.2. Ordenamos por similitud

ClasificadoresEjemplo dataset publicidad online

Quiero predecir si el usuario va a hacer click o no

pros/consPros● No existen el problema de cold start ni de sparcity de los datos.● Posibilidad de brindar recomendaciones al long-tail.● Facilidad para brindar explicación de las recomendaciones.

Cons● Facilidad de overfitting (recomendar solo terror a un amante del genero)● No siempre se dispone de información suficiente para contruir los perfiles.● No es sencillo generar recomendaciones novedosas ni sorpresivas.

(serendipity)

Filtros colaborativos (Memoria)

● Conjunto de usuarios M y de items N● Por cada usuario tenemos una lista de ítems asociados a una preferencia.

Esta preferencia puede ser explícita (ratings, etc.) o implícita (historial de navegación, historial de compras, etc.)

● Usuario activo sobre el cual queremos predecir su preferencia.● Métrica que mide la similitud entre usuarios o entre items, dependiendo el

tipo de filtro.● Método para seleccionar vecinos● Metodo para computar la predicción

Basados en Usuariosconceptualmente muy simple, dados un usuario u y un ítem i:

1. Seleccionar un conjunto de usuarios similares a u que hayan emitido preferencia por i (vecinos)

2. Devolver la preferencia de u por i como el promedio de las preferencias de los vecinos de u ponderado por la similitud entre u y sus vecinos.

pseudocodigo (implementation Mahout)

Dado un usuario u al cual queremos recomendarle items:Por cada usuario w

computo la similitud entre u,wdevuelvo los primeros n usuarios ordenados por similitud, formando el vecindario N de u

Por cada ítem i que algun usuario de N tenga preferencia,pero que u no tenga preferencia.

por cada usuario v en N que tenga preferencia por icomputo la similitud s entre u y vincorporo la preferencia de v por i, pesada por s

devuelvo los primeros n items ordenados por el promedio ponderado

funciones de similitud

● Pearson-correlation:

● cosine similarity:

● jaccard similarity:

Basados en ItemsDados un usuario u y un ítem i:

1. Seleccionar un conjunto de items similares a i donde el usuario u ya expreso preferencias por los mismos.

2. Devolver la preferencia de u por i como el promedio de las preferencias de los items similares a i ponderado por la similitud entre i y sus vecinos.

pseudocodigo (version mahout)

Por cada item i que u no expreso preferenciapor cada item j que u si expreso preferencia

calcular la similitud entre s entre i y jincorporo la preferencia por j pesada por s

devuelvo los primeros n items ordenados por el promedio ponderado

*Dado a que, en general, los items son mas estables que los usuarios, se prefiere el uso de filtros colaborativos basados en items. La posibilidad de poder hacer pre-computo por periodos de tiempo mayores es una de las principales ventajas.

Como evaluamos?● Teoria

○ RMSE○ MAE○ Precision/Recall○ etc.

● Practica○ A/B Testing○ multiarmed-bandit○ etc.

LimitacionesCold start: Nuevos usuarios tienen que expresar preferencias por un tiempo sobre los items antes de que el sistema pueda recomendar contenido de valorSparcity: Si pensamos las preferencias de los usuarios por los items como una matriz MxN vamos a ver que la mayor parte de las entradas son 0’s . Es necesario reducir esa dimensionalidad.Popularity Bias: Dificil recomendar a usuarios con gustos “unicos”. Tendencia a la popularidad. Rich-get-richer effect.Scalability: Con millones de items y usuarios se hace imposible el procesamiento “tradicional”.

Filtros colaborativos (Modelos)

● Factorización de matrices.● Clustering.● Reglas de Asociación.● Clasificadores.● LDA.● etc.

Factorización de matrices● Estos métodos nos permiten reducir la dimensionalidad del problema y

“llenar” los agujeros. En general mejoran los resultados de la versión tradicional de filtros colaborativos.

SVD | Version algebra lineal

● Por que no SVD? Lo que queremos es el proceso inverso, partir de una descomposición y recrear la matriz grande.

● Podemos rellenar A con ceros, pero agrega ruido distorcionando la data.

SVD | version iterativa

● Versión iterativa que aprende utilizando descenso por el gradiente estocástico.

función de costo

Bias● Muchas de las variaciones en los ratings observados corresponden a

comportamientos implícitos de los usuarios y de los ítems.● Versión definitiva incorpora información implícita. ● Ganadora competencia netflix. En producción hoy en día junto con modelo

de redes neuronales.

Clustering● Segmentación de los usuarios en clusters en base a un comportamiento

común a nivel de preferencia de items.● Cada usuario recibe recomendaciones a nivel intra cluster.● Se utiliza como alternativa a problemas de set de datos esparsos.● En algunos casos se utiliza como etapa previa en la aplicacion de filtros

colaborativos tradicionales (memory-based).● En general uso aislado genera peores recomendaciones que filtros

tradicionales.

Podemos formar un cluster compuesto por Bill, Jane y Steve. en este caso vamos a recomendar la pelicula 1,3 y 4 con alta prioridad, luego la 2.

No todo son algoritmos...

UX/Diseño

● Si tenemos poco tiempo y recursos, usar siempre filtros colaborativos tradicionales como primer opción.

● Si tenemos un poco más de tiempo y recursos, probar con algún modelo de factorización de matrices.

● Con un poco mas... ya pensamos en un modelo híbrido donde aplicamos alguna técnica basada en contenido para el long-tail.

● Concentrarse en vencer popularidad (difícil).● Importancia al diseño.● Tiempo para EDA (exploratory data analysis).

Tips

Hadoop● Framework open-source para almacenamiento y procesamiento

distribuido.● File system propio HDFS.● Implementa map-reduce, paradigma de procesamiento paralelo.● Pensado para procesamiento en batch y del total del data set.● One write, many reads.● Permite trabajar con data semi-estructurada y no estructurada.● Escrito en Java

map-reduce● Map(k1,v1) -> list(k2,v2)

○ map(0001,”vamos vamos river plate”) -> [(‘vamos’,1),(‘vamos’,1),(‘river’,1),(‘plate’,1)]

● Reduce(k2, list (v2)) -> list(v3)○ reduce(‘river’,[1,1]) -> (river,2)

● El cluster hadoop mas grande del mundo tiene 100.000 cpu’s en 40.000 servers y es propiedad de yahoo.com

● Contiene 455 petabytes de datos.

Quien lo usa?● Amazon● Facebook● Google● IBM● Last.fm● New York Times● PowerSet (now Microsoft)● Quantcast● Veoh● Yahoo!● etc.

Mahout● Libreria de machine learning escalable.● Escrito en Java.● Corre sobre Hadoop.● ultima version tambien permite Spark.● Objetivo de ser el “lucene de search” para machine

learning.

Clustering● Canopy Clustering ● k-Means Clustering● Fuzzy k-Means ● Streaming k-Means ● Spectral Clustering

Clasificadores● Logistic Regression ● Naive Bayes ● Random Forest ● Hidden Markov Models ● Multilayer Perceptron

filtros colaborativos● User-Based Collaborative Filtering ● Item-Based Collaborative Filtering ● Matrix Factorization with ALS ● Matrix Factorization with ALS on Implicit Feedback ● Weighted Matrix Factorization, SVD++

Otros…● Dimensionality Reduction

○ Singular Value Decomposition○ Lanczos Algorithm deprecated ○ Stochastic SVD○ PCA (via Stochastic SVD)

● Topic Modelling○ Latent Dirichlet Allocation

ejemplo de uso● consola

mahout parallelALS --input $als_input --output $als_output --lambda 0.1 --implicitFeedback true --

alpha 0.8 --numFeatures 2 --numIterations 5 --numThreadsPerSolver 1 --tempDir tmp

● codigo Java

public static void main(String[] args) throws Exception {

modelFile = new File("intro.csv");

DataModel model = new FileDataModel(modelFile);

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood =

new NearestNUserNeighborhood(2, similarity, model);

Recommender recommender = new GenericUserBasedRecommender(

model, neighborhood, similarity);

List<RecommendedItem> recommendations =

recommender.recommend(1, 1);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

}

donde lo usan?● twitter: LDA para el modelo de los intereses de los

usuarios● Yahoo: Frecuent pattern mining● Foursquare: recomendaciones● etc.

Spark● Plataforma de computación open source para análisis y

procesos avanzados en entornos distribuidos.● Unidad de procesamiento y almacenamiento en

memoria.● Evaluacion lazy.● Comparacion Hadoop 10x > disco , 100X > mem.● Escrito en scala, interfaz para java y... python!● Shell interactivo muy comodo.● MLlib, libreria machine learning.

Operadores

word-count

descenso por el gradiente

ALS-MF

TARINGA!

Discovery - Personalización de contenido

Objetivos● Mejorar las recomendaciones.● Profile de Usuario.● Personalización de la home.● Push de contenido.

Dificultades● Recursos (T! no es netflix...)● Burocracia.● Tamaño de datos, 20 M de post activos, 27 M usuarios

registrados... potential matriz grande!● Dispersión comportamiento de usuarios.● Long tail de usuarios.● Expectativas… problema común de investigación

aplicada?

Ingenieria

Que usamos?● mahout● spark● python● redis● go (go?)

martinbonamico@gmail.com

@tin_bonamico