Simulation of the reaction of deuteron fragmentation into...

Post on 03-Mar-2020

0 views 0 download

Transcript of Simulation of the reaction of deuteron fragmentation into...

1A.Litvinenko 1

Simulation of the reaction of deuteron fragmentation into cumulative and double

cumulative pions

A.G. Litvinenko1, 2, E.I. Litvinenko1

alitvin@jinr.ru

1. Joint Institute for Nuclear Research, Dubna, Russia,

2. Dubna University, Dubna, Russia

2A.Litvinenko 2

Outline Introduction

definitions motivation

Simulation structure contribution of the various mechanisms

Results for cumulative pions comparison with experimental data conclusion I

Simulation for double cumulative pions results conclusion II

3A.Litvinenko 3

Cumulative particle (с) definition

1. subthreshold

XcAB Xcpp

2. Produced in the fragmentation region of one of the primary particles

|YY||YY| cBcA

2|YY| AB N/GeV54Tb

Colliding particles are included in the definition asymmetrically!

}p,{EP ccc

4A.Litvinenko 4

Target fragmentation

beam target

cum. part.

Beam fragmentation

beam targetcum. part.

X

X

+

+

Geometry

Colliding particles are included in the definition of asymmetric!

5

Cumulative region (beam fragmentation)

A.Litvinenko

6

Not fragmenting nucleus

A.Litvinenko 6

observed effect

Dependence from the atomic mass of the colliding nuclei

fragmenting nucleus

Colliding particles are included in the definition asymmetrically

θ),f(XA~dσ c

n

t

V.K.Bondarev et al., JINR Rapid Comm., No.4,4, (1984)Yu.S.Anisimov at al., Nucl.Phys., 60, 1070, (1997).

)(0πADO-

t )(180πAp

O-

t

0.4

tA~dσ 1.1

tA~dσ

7A.Litvinenko 7

Experimental data

)π(0Pb)Cu,(C,AC)He,D,( O

t

4

Pb Cu, C,A ; AC pd

dσE t

n

t3

L.Anderson et al., Phys.Rev.C, C28, 1224, (1983).

)p(0Pb)Cu,(C,AC)He,D,( O

t

4

E.Moeller et al., Phys.Rev.C, C28, 1246, (1983).

A.Litvinenko 8

PbCu,C,H,A ; pd

dσE t3

)π(0Pb)Cu,C,(H,AGeV/N) D(4.5 Ot

tA

CX

Yu.S.Anisimov at al., Nucl.Phys., 60,1070,(1997).

Experimental data

4.0tA

75.0tA

9A.Litvinenko 9

hot flucton

Models of cumulative particles production

cold flucton

CC

A.V. Efremov, PEPAN, V.13(3), 613, (1982)

10A.Litvinenko 10

Motivation of the simulation of cumulative particle production

“How relate the experimental data and the models with cold flucton?”

?

11

Simulation(structure)

INITIAL STATEcoordinates of the nucleons

Beam nuclei Target nuclei

PRODUCTION

+

RESCATERING

OF HADRONS

A.Litvinenko

12

INITIAL STATEcoordinates of the nucleons

DEUTERONHulthen DWF

M.Sagavara L.Hulthen. Handb. Phys., 39, 1, (1957).

11

2

181 ,2280

)r

b)r)-(aexp(2--2br)exp()-2arexp((

)(2

)()(

-- fm.b fm.a

ba

baabrP

D

A.Litvinenko

13

INITIAL STATEcoordinates of the nucleons

Barlet R.C., Jakson D.F.Nuclea Sizes and StructureN.Y.: Oxford Univ.Press., (1997)He4

fmd

drd

rP

7.1

)/-exp(4

)( 22

3

A.Litvinenko

14

INITIAL STATEcoordinates of the nucleons

Barlet R.C., Jakson D.F.Nuclea Sizes and StructureN.Y.: Oxford Univ.Press., (1997)

12A t

3/11/3-

A

A

A)A16.11(16.1R

;fm 54.0d

)d/)Rrexp((1

N)r(P

A.Litvinenko

15A.Litvinenko 15

Scattered particles == inside of the cylinder was another particle

fm 197.1 Rmb; 45 NNNN fm 977.0R mb; 30 NN ;)10/()mb(R

S.G. Mashnik et al., nucl-th/0210065v2.

or Nor N

tN

tN

16

Simulation of inelastic deuteron-nuclei cross section

A.Auce and et al., Phys.Rev.C, C53, 2919, (1996).

open circles –experimental data

closed circles – simulated data

A.Litvinenko

17A.Litvinenko 17

Simulation of the pion production

)0(ND Ot

)(0AD Ot

])z,[,b(WD

- probability that pion leave the target without scattering]),z[,b(W

«direct» mechanism

dbdzb]),z[,b(W])z,[,b(Wz)(b,n)NN( ~ d DNc

- probability deuteron reach a point with coordinates }z,b{

18

Pions production

«direct» mechanism

fm 3.4L

fm 4.2

fm 1

L

d

d

22 )2/(LRb

A.Litvinenko

19

fm 4.4)2/L(Rb 22

fm 9.6)2/L(Rb 22

Pions production

«direct» mechanismC

Cu

Pb

A.Litvinenko

fm 1.2)2/L(Rb 22

20

experiment vs theory

X)3(AC ot

V.K.Bondarev at al.,JINR Communication, E93-84, (1984)

X)0(AD ot

Yu.S.Anisimov at al., Nucl.Phys.,

60, 1070, (1997).

Simulation

A.Litvinenko

21A.Litvinenko 21

Pions production

2 «cascades»

2t

1

)0(Np~

~

X

XpND

O

t

2t

1

)0(N~

~

X

XND

O

t

%1direct

1#cascade %5.0

direct

2#cascade

- direct

- cascades (#1+#2) x 100

22

The reaction of the fragmentation of the incident deuterons into cumulative pions on targets with different atomic mass was discussed. The simulation based on the hadron- hadron scattering gives a good description of the experimental data on the dependence of the cross-section from atomic mass of the target.

The contribution of the cascade mechanism was studied. It was shown that even for the heaviest nuclei this contribution does not exceed one percent.

Conclusion I

A.Litvinenko

23

Cumulative region

A.Litvinenko

24

Impulse approximation for pion productionin deuteron proton scattering

2intNND |pd(...)f|d

A.Litvinenko

25

Integration over internal momentum

kpint

2intNND |pd(...)f|d

minint )p( minint )p(

A.Litvinenko

26

Double cumulative region

A.Litvinenko

27

Double cumulative region

A.Litvinenko

28

2

21NN2D1D |kdkd(...)f)k()k(|d

Impulse approximation for pion productionin deuteron deuteron scattering

A.Litvinenko

29

Cumulative region

Double cumulative region

minint,2 )k(

minint,1 )k(

A.Litvinenko

minint,1 )k(

30

Blokhintsev D.I., JETF (RUS), 33, 1295, (1957 ) :

«flucton – two (or more) nucleons at short distance»

c/GeV 2.0k fm; 1 l

)c/GeV(0.2/k )fm(l

intNN

intNN

short distance high internal momentum

A.Litvinenko

31

Simulation.Difference between production of cumulative and

double cumulative pions

cumulative ~ density of nucleonN

n

double cumulative ~ density of fluctons Fn

dbdzb]),z[,b(W])z,[,b(W )z,b(n )NN( ~ d DNc

dbdzb]),z[,b(W])z,[,b(W )z,b(n )FN( ~ d DFcd

A.Litvinenko

32

for simulation one needs a model of flucton

Volume model of flucton A.M.Baldin, PEPAN, 8(3), 429, (1977)

fm 7R

fm 8.0R

Au

f

3Au

3f

fm 400 1 V

fm 1.2V

A.Litvinenko

Tube model of fluconBerlad G., Dar A., and Eilam G., Phys.Rev., D13, 161, (1976)

fm 7R

fm 2 Lfm, 8.0R

Au

f

3Au

3f

fm 400 1 V

fm 0.4V

33

Dependence of the cross section from atomic mass of target nuclei in cumulative and double cumulative pions (volume and tube model of fluctons )

exp. data (cum) Yu.S.Anisimov at al., Nucl.Phys.,

60, 1070, (1997).

A.Litvinenko

)0(AD t

34

Dependence of the cross section from atomic mass of targetnuclei in cumulative and double cumulative

(volume model of flucton )

)0(AD t Pb Cu, C, A; AC pd

dσE t

n

t3

A.Litvinenko

35

Conclusion II

The reaction of the fragmentation of the incidentdeuterons into double cumulative pions on targets withdifferent atomic mass was discussed. The simulationbased on the hadron- hadron scattering shows thatcross section dependence from atomic mass is sensitive tothe model of flucton.

The simulation with volume and tube models of fluctonwas performed. From this simulation it was obtained thatdependence from the target atomic mass in the doublecumulative region is much stronger than in the cumulativeregion.

A.Litvinenko

36A.Litvinenko 36

Backup Slides

37A.Litvinenko 37

Cumulative number (Scale variable)

)N/GeV(PB

)N/GeV(PXAc

CP

} XP

minP2

X

2Nttb

2b

Cm)PP()PP(

2/m)PP(X

386 March 2006 38

Cumulative number (Scale variable)

A.Litvinenko

39A.Litvinenko 39

)X/Xexp(~d0c

Скейлинг (Суперскейлинг? ):

Независимость от начальной энергии;

Независимость от типа детектируемой (кумулятивной) частицы;

Независимость от типа налетающей частицы;

Независимость от ядра мишени для средних и тяжелых ядер;

GeV4005EB

d,p,K,c

Налетающие частицы: лептоны, мезоны, ядра

Ядра мишени: дейтрон - свинец

40A.Litvinenko 40

)X/Xexp(~d0c

Scaling (Superscaling ):(For brevity, it is assumed target fragmentation)

Independence from the initial energy Independence from the detected (cumulative) of the particle Independence from the incident particle Independence from the target nucleus for medium and heavy nuclei

GeV4005EB

d,p,K,c

incident particle : leptons, mesons, nuclei

targets: D - … - Pb

41A.Litvinenko 41

Independence of the cross section behavior from cumulative particle

p

+K

K

42A.Litvinenko 42

Independence from initial energy.

30-40 %

43A.Litvinenko 43

Independence from fragmenting nuclei

44A.Litvinenko 44

V.K.Bondarev et al., JINR Communication,E1-93-84,Dubna, (1993).

)GeV,120 (0.5CGeV/(cN)) 5.4)(C,HeD,B(p, O4 )GeV,3 (4.6)C,He,D,p(GeV/(cN)) 5.4(C O4

Yu.S.Anisimov at al., Nucl.Phys., 60, 1070, (1997).

45A.Litvinenko 45

Theory

2.0pint

)c/GeV(p/2.0~.)фм(lintNN

Non nucleon degrees of freedoms

Empirical approaches

);q6( );NN(**

);( ...);q9(

)q(F~dq

.фм1lNN

46

Simulation.Difference between production of cumulative

and double cumulative pions

dbb)b(W)b()Wn( ~ d DNc

dbb)b(W)b()Wn( ~ d DFc

cumulative ~ density of nucleon Nn

double cumulative ~ density of fluctons Fn

2

21NN2D1D |kdkd(...)f)k()k(|d

A.Litvinenko

A.Litvinenko 47

PbCu,C,H,A ; pd

dσE t3

)π(0Pb)Cu,C,(H,AD O

t

tA

CX

Yu.S.Anisimov at al., Nucl.Phys., 60, 1070, (1997).

A.G.Litvinenko, A.I.Malakhov,P.I.Zarubin,JINR Rapid Communication №1(58) ,27,(1993)

A.Litvinenko 48

A.Litvinenko 49

A.Litvinenko 50

A.Litvinenko 51

X),N(N),N( t

E

pd

pd

dEtot

20)P-(P t);texp(C

pd

dE

XNN t

52A.Litvinenko 52

duality– HOW IT IS LOOKS LIKE

53A.Litvinenko 53