Shot Noise and the Non-Equilibrium FDT · 2019-12-18 · • Shot noise is quantum noise • Shot...

Post on 06-Apr-2020

0 views 0 download

Transcript of Shot Noise and the Non-Equilibrium FDT · 2019-12-18 · • Shot noise is quantum noise • Shot...

Shot Noise and the Non-Equilibrium FDT

Rob SchoelkopfApplied PhysicsYale University

Gurus: Michel Devoret, Steve Girvin, Aash Clerk

And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven, B. Yurke, L. Levitov, K. Likharev, …

Thanks for slides: L. Kouwenhoven, K. Schwab, K. Lehnert,…

Noise and Quantum MeasurementR. Schoelkopf

1

Outline

• Shot noise is quantum noise

• Shot noise of a tunnel junction

• Measurements of shot noise – testing the non-eq. FDT

• “Quantum shot noise” – measuring the frequency dependence of shot noise

• Experiments on the zero point noise in circuits

• Shot noise and the nonequilibrium FDT (time permitting)

Noise and Quantum MeasurementR. Schoelkopf

2

Fundamental Noise SourcesJohnson-Nyquist Noise

• Frequency-independent• Temperature-dependent• Used for thermometry

4( ) BI

k TS fR

=2A

H z⎡ ⎤⎢ ⎥⎣ ⎦

3

• Frequency-independent • Temperature independent

( ) 2IS f eI=Shot Noise

2AH z

⎡ ⎤⎢ ⎥⎣ ⎦

Shot Noise – “Classically”

Noise and Quantum MeasurementR. Schoelkopf

4

D

what’s up here?

n I qDn∼

Poisson-distributedfluctuations

Incident “current”of particles

Barrier w/ finitetrans. probability

“white” noise with

2IS qI=

Shot Noise is Quantum NoiseEinstein, 1909: Energy fluctuations of thermal radiation

“Zur gegenwartigen Stand des Strahlungsproblems,” Phys. Zs. 10 185 (1909)

( )2 3

2 22( ) ( )cE Vdπωρ ω ρ ω ω

ω⎡ ⎤

∆ = +⎢ ⎥⎣ ⎦

particle term = shot noise! wave termfirst appearance of wave-particle complementarity?

†, 1a a⎡ ⎤ =⎣ ⎦Can show that “particle term” is a consequence of (see Milloni, “The Quantum Vacuum,” Academic Press, 1994)

( ) 1/ 1kTn n e ω −= = −

( ) 1/ 1 nnnP n n += +

22 † † †n a aa a a a∆ = −2† † †( 1)a a a a a a= + −

2† † † †a a aa a a a a= + − † † 2( 1) 2na a aa n n P n= − =∑2 2n n n∆ = + Noise and Quantum Measurement

R. Schoelkopf5

Conduction in Tunnel Junctions

Noise and Quantum MeasurementR. Schoelkopf

6

Assume: Tunneling amplitudes and D.O.S. independent of energyFermi distribution of electrons

V

I

(1 )

(1 )

L R L R

R L R L

GI f f dEeGI f f dEe

= −

= −

L R R LI I I GV→ →= − =Difference gives current:

Conductance (G)is constant

Fermi functions

Non-Equilibrium Noise of a Tunnel Junction

Sum gives noise:

( ) 2 coth2I

B

eVS f eIk T

⎛ ⎞= ⎜ ⎟

⎝ ⎠

( ) 2 ( )I L R R LS f e I I→ →= +

/I V R=

(Zero-frequency limit)

*D. Rogovin and D.J. Scalpino, Ann Phys. 86,1 (1974)Noise and Quantum Measurement

R. Schoelkopf7

Non-Equilibrium Fluctuation Dissipation Theorem

( ) 2 / coth2I

B

eVS f eV Rk T

⎛ ⎞= ⎜ ⎟

⎝ ⎠

Johnson Noise

2eIShot Noise

4kBTR

Transition RegioneV~kBT

Noise and Quantum MeasurementR. Schoelkopf

8

Noise Measurement of a Tunnel Junction

SEM5µ

P

Al-Al2O3-Al Junction

Measure symmetrized noise spectrum at kTω <

Noise and Quantum MeasurementR. Schoelkopf

9

Seeing is Believing

1PP Bδ

τ=

High bandwidth measurements of noise

Noise and Quantum MeasurementR. Schoelkopf

10

410PPδ −=8

,~ 10 zB H τ = 1 second

Test of Nonequilibrium FDT

Noise and Quantum MeasurementR. Schoelkopf

11

Agreement over four decades in temperature

To 4 digits of precision

L. Spietz et al., Science 300, 1929 (2003)

Self-Calibration Technique

12

P(V) = Gain( SIAmp+SI(V,T) )

2 /Bk T e

4 AmplifierI

BG Sk TR

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

+

P(V)

2eI

V

Comparison to Secondary Thermometers

Noise and Quantum MeasurementR. Schoelkopf

13

Two-sided Shot Noise Spectrum(Quantum, non-equilibrium FDT)

( ) ( )( )

( )( )/ /

/ R / R1 1I eV kT eV kT

eV eVS

e eω ω

ω ωω − + − −=

+ −+

− −

ω0ω =

( )IS ω

/eV

/eV−

V 2 / Rω

eI0T =

Aguado & Kouwenhoven, PRL 84, 1986 (2000). Noise and Quantum Measurement

R. Schoelkopf14

Finite Frequency Shot Noise

Noise and Quantum MeasurementR. Schoelkopf

15

Symmetrized Noise: ( ) ( )symS S Sω ω= + + −

Shot noise

Quantum noise

don’t addpowers!

Measurement of Shot Noise Spectrum

Noise and Quantum MeasurementR. Schoelkopf

16

Theory Expt.

Schoelkopf et al., PRL 78, 3370 (1998)

Noise and Quantum MeasurementR. Schoelkopf

17

Shot Noise at 10 mK and 450 MHz

/ 2h kTν =

L. Spietz, in prep.

With An Ideal Amplifier and T=0

VeV=hνeV=-hν

2eIIS

2IS h Gν=

2IS h Gν=

Quantum noisefrom source

Quantum noiseadded by amplifier

Noise and Quantum MeasurementR. Schoelkopf

18

Summary – Lecture 1

• Quantizing an oscillator leads to quantum fluctuationspresent even at zero temperature.

• This noise has built in correlations that make it very different from any type of classical fluctuations, and these cannot be represented by a traditional spectral density- requires a “two-sided” spectral density.

• Quantum systems coupled to a non-classical noise source can distinguish classical and quantum noise, and allow us to measure the full density – next lecture!

Noise and Quantum MeasurementR. Schoelkopf

19

Additional material on Johnson noise follows

Noise and Quantum MeasurementR. Schoelkopf

20

Nyquist’s Derivation of Johnson’s Noise

Noise and Quantum MeasurementR. Schoelkopf

21

Connection Between Johnson Noise and Blackbody Radiation*

*R. H. Dicke, Rev. of Sci. Instrum. 17, 268 (1946)

AntennaCoaxial-Line

Resistor Temperature TR

Enclosure Walls Black Temperature Tbb

Noise and Quantum MeasurementR. Schoelkopf

22

Johnson Noise Power ≡ Blackbody Radiation PowerTR = Tbb

Connection Between Johnson Noise and Blackbody Radiation in Rayleigh-Jeans Limit

Antenna

Resistor Temperature TR

Coaxial-Line

νT h /kR BEnclosure Walls Black

4 /I BS k T R= Temperature TbbRayleigh-Jeans limit

∼ TP k Bbb-Rayleigh- eans B bbJNoise and Quantum Measurement

R. Schoelkopf23

∼ TP k BJohnson RB

Radiative Cooling of a Resistor?

P = kTB T=0T > 0

maxkTkTB kTh

= ×Total radiated power:

Total conductance:2

/photonkG dP dT Th

= =

One quantum of thermal conductance per electromagnetic mode

More correct:/

0 0

( )1h kT

hP h n d de ν

νν ν ν ν∞ ∞

= =−∫ ∫

Schmidt, Cleland, and Schoelkopf, PRL 93, 045901 (2004)

Noise and Quantum MeasurementR. Schoelkopf

24

Resistor as Ideal Square Law DetectorEγ

~ / Hn E kTγ γ

eC

T=0

/H eT E C=Single photon heats one resistor to

If no other thermal conductances, cools entirely by radiation!

~ / Hn E kTγ γPhoton number gain is large!:

Where’s the nonlinearity?Noise and Quantum Measurement

R. Schoelkopf25