SELVEDGE FREE WOVEN NARROW FABRICS FOR MEDICAL...

Post on 23-Apr-2018

217 views 2 download

Transcript of SELVEDGE FREE WOVEN NARROW FABRICS FOR MEDICAL...

SELVEDGE FREE WOVEN NARROW FABRICS

FOR MEDICAL APPLICATIONS

Y.-S. GLOY, C. ROSIEPEN, T. GRIES

Institut für Textiltechnik der RWTH Aachen University Aachen, Germany

INTERNATIONAL CONGRESS ON HEALTHCARE AND MEDICAL TEXTILES

MAY 17-18, 2011

IZMIR, TURKEY

Institut für Textiltechnik of

RWTH Aachen University

Narrow fabrics for medical applications

Approach

Elaboration of the implants

requirements

Transfer of requirements into a

fabric construction

Production of functional models

Testing of functional models

Summary and outlook

Content

2

Institut für Textiltechnik of

RWTH Aachen University

Narrow fabrics for medical applications

Approach

Elaboration of the implants

requirements

Transfer of requirements into a

fabric construction

Production of functional models

Testing of functional models

Summary and outlook

Content

3

The unique position of ITA

ap

plic

ati

on

fie

lds

mobility

building &

living

health

energy

Comprehensive textile

process chains

technology and

competence fields

raw

mate

rials

:

natu

ral fi

bers

, p

oly

mers

,...

sem

i-fi

nis

hed

texti

les &

pro

du

cts

4

Textile: textile fibers & filaments, yarn production, fabric production

Technical Textiles: high performance filaments, textile fabric production, coating

Nonwovens: nonwoven laying, bonding, nanofiber nonwovens

Textile Preforms: singlestep-, multistep-preforming, prepregging

Implants: fibre- and yarn-structuring, tissue engineering

Smart Textiles: textile development, function integration

Interior Textiles: carpets, home textiles, automobile interior

Complete Process Chain

5

Filament yarn technique: melt and solution spinning, multicomponent yarns

High modulus fibers: carbon, glass, and basalt fiber development

Staple fibre yarns: spinning preparation, spinning and winding processes

Knitted fabrics: circular knitting, knitting, knitted spacer fabrics

Broad weaving: air and picker weaving

Narrow textiles: narrow weaving, braided textiles

Reinforcement textiles: non crimp bi- & multiaxial fabrics, 3D-braided structures

Coating: pretreatment, coating, prepregs

Assembling: 1- and 2 sided stitching, welding, bonding, handling

Technology fields

6

ITA – Facts and Figures

Budget: ca. 9,8 Mio. €

Staff:

80 Scientists

40 Service personnel

150 Graduate research assistants

50 Students majoring in textile

technology each year

Research and development

Publicity and third party

funded research

Academic and industrial education

Development and transfer

Direct industrial research

Further education

partially public public

Str

ictly c

onfidential

Fundamental

Research

ca. 30%

Industrial

Funding

ca. 30%

Industry-Related

Public Funding

ca. 30%

Subsidy

ca. 10%

7

Institut für Textiltechnik of

RWTH Aachen University

Narrow fabrics for medical applications

Approach

Elaboration of the implants

requirements

Transfer of requirements into a

fabric construction

Production of functional models

Testing of functional models

Summary and outlook

Content

8

Narrow fabrics for medical applications - Approach

Implants

no adequate supply of individually-tailored

patient-friendly, non-ageing implants

Narrow weaving technology

opportunity to fulfill such a demand

defined structure and porosity

defined mechanical and medical

properties

Approach

Elaboration of the

implant´s requirements

Transfer of the requirement into

a fabric construction

Production of functional models

Testing of the functional models

Chosen application for narrow woven fabrics

9

stenttubular structure

spinal diskmultilayer fabric

artificial ligaments

narrow fabric

Institut für Textiltechnik of

RWTH Aachen University

Narrow fabrics for medical applications

Approach

Elaboration of the implants

requirements

Transfer of requirements into a

fabric construction

Production of functional models

Testing of functional models

Summary and outlook

Content

10

Elaboration of the implants requirements

11

Artificial

Ligament

Requirements

Biocompatibility Needed

Biostability Needed

Breaking Load [N] 600 to 1300

Elongation at break [%] 20 to 45

Length [mm] Up to 150

Low lumen diameter [mm] 9 to 11

Low Hysterese Needed

Ingrowth of a tissue-core Possible

No elongation of structure, just

elongation of material Needed

Elaboration of the implants requirements

12

nucleus

pulposus

anulus fibrosus

prolapse

bundle of nerve fibers

nerv

Sealing of anulus fibrosus

yarn Crack of tissue curred tissue

Elaboration of the implants requirements

13

Sealing of

annulus

fibrosus

Requirements

Height x width [mm] ~3 x 15

Compression strength 10-13

Tensile strength [MPa] 7 - 10

Young-Modulus axial [MPa] 0,27/0,82

Elastic elongation axial [%] ≥ 25

Elongation at break ≥ 20 - 30 %

Sterilization No influence on properties

Pore size [µm] 200 – 1200

Wetting angle [°] 55 – 80

Yarn diameter [mm] 0,15 to 1

Elaboration of the implants requirements

14

Lumbar

artificial

spinal disk

Requirements

Height [mm] 10 - 15

Compression strength of isolated

vertebral body [MPa] Ø 4,6 max 10

Design Internal surfaces

Imlant form Medtronic, Inc,

Tolochenaz, Maverick, USA Braided textile implant,

Kotani et. al.

Institut für Textiltechnik of

RWTH Aachen University

Narrow fabrics for medical applications

Approach

Elaboration of the implants

requirements

Transfer of requirements into a

fabric construction

Production of functional models

Testing of functional models

Summary and outlook

Content

15

Transfer of requirements into a fabric construction

Artificial ligament

Woven tube

Polytetrafluoroethylene (PTFE)

fineness of 440 dtex , (DIN EN ISO 2060),

tensile strength of 38.86 cN/tex

elongation at break of 10.49 % (DIN EN ISO 2062)

Polyethylene terephthalate (PET)

Multifilament

fineness of 113 dtex f64 (DIN EN ISO 2060)

tensile strength of 88.6 cN/tex

elongation at break of 9.23 % (DIN EN ISO 2062).

Monofilament yarns

fineness of 159 and 178 dtex (DIN EN ISO 2060),

tensile strength of 46.93 cN/tex and 47.17 cN/tex, and

elongation at break of 21.01 % and 20.98 % (DIN EN ISO 2062)

Weave pattern

16

87

65

43

21

1 2 3 4

Schäfte

Ra

pp

ort

Kettfäden

Schussfaden

Visualisiertes GewebeBindungspatrone Schlauchquerschnitt Visualised fabricsWeave pattern

warp

weft

Cross section

87

65

43

21

1 2 3 4

Schäfte

Ra

pp

ort

Kettfäden

Schussfaden

Visualisiertes GewebeBindungspatrone Schlauchquerschnitt Visualised fabricsWeave pattern

warp

weft

Cross sectionVisualised fabric

Transfer of requirements into a fabric construction

Sealing of annulus fibrosus

Distance fabric

Polylactic acid (PLA)

fineness of 162 dtex f72 (DIN EN ISO 2060)

tensile strength of 15.09 cN/tex

elongation at break of 62.04 % (DIN EN ISO 2062).

Polyvinylidene fluoride (PVDF)

fineness of 240 dtex f72 (DIN EN ISO 2060),

tensile strength of 19.49 cN/tex

elongation at break 88.56 % (DIN EN ISO 2062)

Weave pattern

17

Fabric structure

Falschdreherbindung Waffelbindung

10

98

76

54

32

11 2 3 4 5 6 7 8 9 10

Schäfte

Ra

pp

iort

87

65

43

21

1 2 3 4 5 6 7 8 9 10

Schäfte

Ra

pp

ort

Anulus-Fibrosus

Nucleus Pulposus

PVDF

PLA

Transfer of requirements into a fabric construction

18

Falschdreherbindung Waffelbindung

10

98

76

54

32

1

1 2 3 4 5 6 7 8 9 10

Schäfte

Ra

pp

iort

87

65

43

21

1 2 3 4 5 6 7 8 9 10

Schäfte

Ra

pp

ort

Sealing of annulus fibrosus

Distance fabric

Nucleus Pulposus – PVDF

Anulus-Fibrosus - PLA

Transfer of requirements into a fabric construction

Lumbar artificial spinal disk

Multilayer fabrics

Material: Ultra-high-molecular-weight polyethylene

3 versions

4 Layer fabric with V-Pile

5 Layers fabric

5 Layer fabric with flotation of yarns

Weave pattern

19

Visualised fabric

1.Lage

2.Lage

3.Lage

4.Lage

Polfaden

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

98

76

54

32

1

1 2 3 4 5 6 7 8 9

Schäfte

Ra

pp

ort

pile

1. layer

2. layer

3. layer

4.. layer

1.Lage

2.Lage

3.Lage

4.Lage

Polfaden

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

98

76

54

32

1

1 2 3 4 5 6 7 8 9

Schäfte

Ra

pp

ort

pile

1. layer

2. layer

3. layer

4.. layer

Institut für Textiltechnik of

RWTH Aachen University

Narrow fabrics for medical applications

Approach

Elaboration of the implants

requirements

Transfer of requirements into a

fabric construction

Production of functional models

Testing of functional models

Summary and outlook

Content

20

Production of functional models

Shuttle loom

21

creel

reed

shuttle

take-

off

take-

off healds

Production of functional models

Narrow velvet loom

22

creel

take-off weft

bobbins

bobbin

brake

creel bobbin

break

take-

off

healds needels

fabric formation

Production of functional models

Produced fabrics – woven tubes

23

Production of functional models

Produced fabrics – distance fabrics

24

Warp

Weft

Pile

Production of functional models

Produced fabrics – multilayer fabrics

25

4 Layer fabric with V-Pile 5 Layers fabric 5 Layers fabric

with flotation

Institut für Textiltechnik of

RWTH Aachen University

Narrow fabrics for medical applications

Approach

Elaboration of the implants

requirements

Transfer of requirements into a

fabric construction

Production of functional models

Testing of functional models

Summary and outlook

Content

26

Testing of functional models

Artificial ligament – tensile test

27

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

1800,00

2000,00

2200,00

0,00 10,00 20,00 30,00 40,00

Fo

rce

[N

]

Elongation [%]

01-001 PTFE 01-008 PET

01-005 PET

02-001 PET

02-004 PET

Upper Load

Lower Load

Fo

rce

F [

N]

Elongation ε [%]

Change of weft density

Testing of functional models

28

Artificial

Ligament

Requirements Result

Biocompatibility Needed Given

Bio-stability Needed Given

Breaking Load t [N] 600 to 1300 Given

Elongation at break [%] 20 to 45 Given

Length [mm] Up to 150 Up to 150

Low lumen diameter [mm] 9 to 11 9 to 11

Low Hysterese Needed No research

Ingrowth of a tissue-core Possible No research

No elongation of structure,

just elongation of material Needed

Given (woven

structure)

Testing of functional models

29

Sealing of

annulus

fibrosus

Requirements Result

Height x width [mm] ~3 x 15 2,6 x 14,1

Compression strength 10-13 7,35

Tensile strength [MPa] 7 - 10 10,63

Young-Modulus axial [MPa] 0,27/0,82 2,93

Elastic elongation axial [%] ≥ 25 ≥ 25

Elongation at break ≥ 20 - 30 % 47,90

Sterilization No influence on

properties

No influence on

properties

Pore size [µm] 200 – 1200 336,53

Wetting angle [°] 55 – 80 0°

Yarn diameter [mm] 0,15 to 1 0,2

Testing of functional models

Artificial ligament – compression test (height too low)

30

Druckfestigkeit [N/mm²]

0.5 1 1.5 2 2.5 3 3.5

0.3

0.2

0.05

0

Dehnung

0.25

0.15

0.1

Model 1

Model 2

Model 3

Zielbereich

Dehnung

ε

Druckfestigkeit σ [N/mm2]

F

F

Modell 1

Modell 2

Modell 3

Elo

ng

atio

n ε

[%]

Compression strength σ [N/mm2]

Target areaSample 1

Sample 2

Sample 3

Institut für Textiltechnik of

RWTH Aachen University

Narrow fabrics for medical applications

Approach

Elaboration of the implants

requirements

Transfer of requirements into a

fabric construction

Production of functional models

Testing of functional models

Summary and outlook

Content

31

Summary and outlook

Summary

Production of implants by narrow weaving

technology is possible

General usability of narrow

woven fabrics for the chosen

applications

By changing weaving parameters,

mechanical or medical properties

can be adapted

Customization of implants

depending on patient needs

is possible

Outlook

Research is needed to produce

fully usable implant

32

stenttubular structure

spinal diskmultilayer fabric

artificial ligaments

narrow fabric

application

produced functional models

Acknowledgements

We thank the Forschungsvereinigung Forschungs-kuratorium

Textil e.V. for the financal support of the research project AiF-

No. 16322 N, („Wirkkantenfreie 3D-Bandgewebe -

Entwicklung von Funktionsmodellen für die Medizintechnik“),

which occured in the program for the sponsorship of the

„Industriellen Gemeinschaftsforschung (IGF)“ from funds of

the Bundesministerium für Wirtschaft und Technologie (BMWi)

through the Arbeitsgemeinschaft industrieller

Forschungsvereinigungen e.V. (AiF)

Furthermore we thank the companies G. Krahmer GmbH,

Buchholz, Germany and MAGEBA Textilmaschinen GmbH &

Co. KG, Bernkastel-Kues, Germany for theirs support

33

4th WORLD CONFERENCE ON 3D FABRICS AND

THEIR APPLICATIONS

September 10th – 12th, 2012 - RWTH Aachen University, Aachen, Germany

Organised by TexEng Software Ltd, Manchester UK and

Institut für Textiltechnik der RWTH Aachen, Germany, in association with The

University of Manchester

Conference Co-Chairs: Professor John W S Hearle,

Professor Thomas Gries, ir Geert de Clercq

http://www.texeng.co.uk/

34

Thank you very much for your attention

Dipl.-Ing. Yves-Simon Gloy

Institut für Textiltechnik der RWTH Aachen University

Otto-Blumenthal-Str.1

52074 Aachen, Germany

Tel.: +49 241 8023470 Fax: +49 241 22422

yves.gloy@ita.rwth-aachen.de

Weaving kids

Source: Aachener Nachrichten

35