Seismic Design of Concrete Structure. Seismic Design of Concrete Structure Earthquakes occur in many...

Post on 11-Jan-2016

217 views 0 download

Tags:

Transcript of Seismic Design of Concrete Structure. Seismic Design of Concrete Structure Earthquakes occur in many...

Seismic Design of Concrete Structure

Seismic Design of Concrete Structure

• Earthquakes occur in many regions of the world. In certain locations where the intensity of the ground shaking is small, the designer does not have to consider seismic effects.

• In other locations-particularly in regions near an active geological fault (a fracture line in the rock structure), such as the San Andreas fault that runs along the western coast of California-large ground motions frequently occur that can damage or destroy buildings and bridges in large areas of cities

• Assuming the building is fixed at its base, the displacement of floors will vary from zero at the base to a maximum at the roof

Earthquake focus and epicenter

Distribution of magnitude 5 or greater earthquakes,

1980 - 1990

There are several analytical procedures to determine the magnitude of the base shear for which buildings must be designed, we will

only consider the equivalent lateral force procedure, described in the ANSI/ASCE and UBC standard. Using this procedure, we compute the magnitude of the base shear as

21.0

10.01

DS

D

S

S

Palestine

Table 2:Design Coefficients & Factors for Basic Seismic-Force-Resisting Systems

Story Drift & The P-Delta Effect

Allowable Story Drift,

Important Factor

Overturning

Example 1• Determine the design seismic forces acting at each

floor of the six-story office building in Figure below.• D.L=8kN/m2• L.L=2.5kN/m2• Shear wall system

18m

25m

N

kN

IR

WSV

kNWISV

kNV

I

WallShearR

T

kNW

S

IRT

WSV

DS

DS

D

D

1134

14

)21600(21.0

20021600)21.0)(1(0441.0)(0441.0

1169)(462.0

2160010.0

1

4

462.0200488.0

21600)6)(18)(25(8

10.0

max

min

14

1

1

43

T=0.462 < 0.5 then k=1

Note:Column 4 = column 3a * Column 2

Fx = column 5 * (V = 1134) ((

Vx = cumulative column 6Mx = moment from Fx can calculated from shear Area

Shear Wall Design

Shear walls provide a high in-plane stiffness and strength for both lateral and gravity loads, and are ideally suitable for tall buildings, especially those conceived in reinforced concrete. Tall buildings designed to carry the entire lateral loading through shear walls can be economical to heights of around 40 stories. Taller structures should combine shear walls with other structural systems.

Introduction

Shear Wall design

Shear Wall Design Steps

I

MC

A

Pf

lbbhI

c

wwg

1212

33

'2.0 cc ff

1- Calculate External Load

u

u

u

P

V

M

2- boundary element check

Then boundary elements are not requiredif

wb ll )25.02.0(

wl

wb

wb ll )25.02.0(

bbwb

wl

Then choose the one of:

3- Longitudinal Reinforcement

At least two curtains of reinforcement are needed in the wall if the in-plane factored shear exceed a value of

6

'ccv fA

wwcv blA

ync

cvnuw

w

ync

cvnuw

w

ff

AVVl

hif

ff

AVVl

hif

4 5.1

6 2

'

'

6

4

6.0

'

maxccv

n

fAV

Minimum reinforcement

6

0025.0

0025.0 6

'

'

ccvu

h

v

ccvu

fAVif

fAVif

0025.0

0015.0

16bar for

0020.0

0012.0

16bar for

h

v

h

v

4- Verify adequacy of shear wall section at its base under combined axial load and bending moment

)2(in ent reinforcem of area

elementsboundary in ent reinforcem of area

diagramn interactio,

bwsv

sb

svssb

gs

g

u

wg

u

u

u

llA

A

AAA

AA

A

P

lA

M

P

M

wb ll )25.02.0(

bbwb

wl

5- Boundary element transverse reinforcement

yh

c

ch

gcsh

yh

ccsh

f

f

A

AhSA

f

fhSA

'

'

1 3.0

09.0

ch

h

b cb

You must check it in two dimension

Example 1 Design the following shear wall

1- Calculate External Load

Shear Force

Moment

mlw 4

mbw 2.0

requiredelement Boundary

6)30(2.0/4.1810*067.1

28800

42.0

1500

067.112

42.0

12

26

33

MpamMNf

lbI

c

wwg

2- boundary element check

4)25.02.0(8.0

3.0bb2.0wb

4wl

3- Longitudinal Reinforcement

At least two curtains of reinforcement are needed in the wall if the in-plane factored shear exceed a value of

kNVkNfA

uccv 6603.730

6

30)4000(200

6

'

Minimum reinforcement

6

'ccv

u

fAV

directioneach 25@12

45

44002001000002.00020.0

directioneach 25@12

45

4.224020010000012.00012.0

16bar for

max

22

max

22

cmuse

cmS

cmmmA

cmuse

cmS

cmmmA

svh

svv

4- Verify adequacy of shear wall section at its base under combined axial load and bending moment

1816 element boundary each for 25.38

5.76)13.12(100

10010000)101(01.0

01.0

9.0

21.05.1101

101500

31.02.24000101

108800

10113.08.022.08.024

101500

.108800

2

225.06.2

226

6

3

6

6

262

3

6

usecm

cmAAA

cmmmAA

ksiMPaA

P

ksiMPalA

M

mmmA

NP

mNM

svssb

gs

g

u

wg

u

g

u

u

wb ll )25.02.0(

bbwb

wl

5- Boundary element transverse reinforcement

yh

c

ch

gcsh

yh

ccsh

f

f

A

AhSA

f

fhSA

'

'

1 3.0

09.0

ch

h

b cb

22'

4.52.543420

30)704)(120(09.0 09.0

4.20)8.13(230

4.70)8.13(280

120

cmmmf

fhSA

cmb

cmh

mmS

yh

ccsh

c

c

Check short directionCheck short direction

Check long direction

2

22'

6.1

6.1160420

30)204)(120(09.0 09.0

4.20)8.13(230

4.70)8.13(280

120

cmA

cmmmf

fbSA

cmb

cmh

mmS

sh

yh

ccsh

c

c

Check long direction

in short direction use 2 legs close hoop & 2 internal legs

in short direction use 2 legs close hoop

1026.5)01.2(2)79.0(2 cm

10

16

26.1)79.0(2 cm

Design Example

5.0

5.0

5.0

5.0

5.0D.L=8kN/m2L.L=2.5kN/m2

20.0

20.0

3.0

5.0

L

3.0

3.0 3.01

2

7.5

10

Design Shear wall 1 & 2 in the figure belowGaza City

20.0

20.0

3.0

5.0

L

3.0

3.0 3.01

2

7.5

10

1- calculate the length of shear wall 1

n

i i

ii

I

yIy

1

10

,0166.012

2.0

5.7

,08.212

2.05

1

33

1

2

3

2

y

LL

I

y

I

mL

L

II

L

II

yIyI

I

yIy

n

i i

ii

5.4

0)10(0166.0)5.7(08.2

0)10(0166.0)5.7(08.2

1

3

21

3

21

2211

1

x

y

kN

IR

WSV

kNWISV

kNV

I

WallShearR

T

kNW

S

IRT

WSV

DS

DS

D

D

1050

25.14

)16000(21.0

2.18516000)21.0)(25.1(0441.0)(0441.0

909)(55.0

1600010.0

25.1

4

55.0250488.0

16000)5)(20)(20(8

10.0

max

min

25.14

1

1

43

2- Seismic Shear for the total building

For the total BuildingT=0.55> 0.5 025.11 2

5.0 Tk

V = 909 kNM =16726 kN.m

For shear walls

)(05.0.

)(

)(

22

1

LRCxIyI

yIb

I

Ia

MbaM

VbaV

iixiiy

ii

n

ii

i

i

i

x

y

20.0

20.0

3.0

5.0

L

3.0

3.0 3.01

2

7.5

10

In this example without neglect the effect of twist force

For shear wall No. 1

42.012

52.012

5.42.0

125.42.0

1

33

3

n

ii

i

I

Ia

1

2

024.0

)2005.0()10(4)5.7()10(

102

1232.02

1252.02

125.42.0

125.42.0

333

3

b

b

20.0

20.0

3.0

5.0

L

3.0

3.0 3.01

2

7.5

10

3- In this example we will neglect the effect of twist force

For shear wall No. 1

42.012

52.012

5.42.0

125.42.0

1

33

3

n

ii

i

I

Ia

mkNMaM

kNVaV

i

i

.70251672642.0)(

38290942.0)(

For shear wall No. 2

58.0a

mkNMaM

kNVaV

i

i

.97021672658.0)(

52890958.0)(

1

2

requiredelement Boundary

6)30(2.0/072.1210*519.1

25.27025

5.42.0

1500

519.112

5.42.0

12

23

33

MpamMNf

lbI

c

wwg

boundary element check

5.4)2.0(9.0

mlw 5.4

mbw 2.0

4- Shear wall design

Longitudinal Reinforcement

At least two curtains of reinforcement are needed in the wall if the in-plane factored shear exceed a value of

kNVkNfA

uccv 3826.821

6

30)4500(200

6

'

Minimum reinforcement

6

'ccv

u

fAV

directioneach 25@12

45

44002001000002.00020.0

directioneach 25@12

45

4.224020010000012.00012.0

16bar for

max

22

max

22

cmuse

cmS

cmmmA

cmuse

cmS

cmmmA

svh

svv

Verify adequacy of shear wall section at its base under combined axial load and bending moment

1616 element boundary each for 8.32

6.65)13.12(90

909000)109.0(01.0

01.0

9.0

24.066.1109.0

101500

25.073.14500109.0

107025

109.09.02.05.4

101500

.108800

2

225.0

)9.0(25.4

226

6

3

6

6

262

3

6

usecm

cmAAA

cmmmAA

ksiMPaA

P

ksiMPalA

M

mmmA

NP

mNM

svssb

gs

g

u

wg

u

g

u

u

5.4)2.0(9.0

mlw 5.4

mbw 2.0

Boundary element transverse reinforcement

yh

c

ch

gcsh

yh

ccsh

f

f

A

AhSA

f

fhSA

'

'

1 3.0

09.0

ch

h

b cb

22'

2.59.516420

30)804)(100(09.0 09.0

4.10)8.13(220

4.80)8.13(290

100

cmmmf

fhSA

cmb

cmh

mmS

yh

ccsh

c

c

Check short directionCheck short direction

Check long direction

Check long direction

in short direction use 2 legs close hoop & 2 internal legs

in short direction use 2 legs close hoop

1026.5)01.2(2)79.0(2 cm

10

16

26.1)79.0(2 cm

22'

7.08.66420

30)104)(100(09.0 09.0

4.10)8.13(220

4.80)8.13(290

100

cmmmf

fhSA

cmb

cmh

mmS

yh

ccsh

c

c

Repeat the last procedure for Shear wall 2