Seakeeping Fast Ships - ULisboa · 6 – SOME NOTES ON THE SEAKEEPING OF FAST SHIPS • High speed...

Post on 08-Sep-2018

220 views 0 download

Transcript of Seakeeping Fast Ships - ULisboa · 6 – SOME NOTES ON THE SEAKEEPING OF FAST SHIPS • High speed...

6 – SOME NOTES ON THE SEAKEEPING OF FAST SHIPS

• High speed craft: (HSC code, IMO, 1995)

• Alternatively Fn > 0.4 • Frequent and and severe slamming

occurrences• Large vertical accelerations• Nonlinear responses in waves• Dynamic instabilities

• Computational methods

• Incorporate seakeeping into desing

( )smV /7.3 1667.0max ∇≥

NUNO FONSECA - IST

Classificação de navio rápido pelo critério do HSC code

Velocidade mínima para classificação de navio rápido

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000 100000

Deslocamento (m3)

Vel

ocid

ade

(nós

)

( ))/7.3 1667.0 smV ∇=

Velocidade mínima para classificação de navio rápido

0

10

20

30

40

0 50 100 150 200 250

comprimento (m)

Vel

ocid

ade

(nós

)

Fn = 0.4

Classificação hidrodinâmica de navio rápido

Navios de deslocamento

Fn < 0.4, peso do navio suportado por forças hidrostáticas

Classificação hidrodinâmica dos navios

Classificação hidrodinâmica dos navios

Navios de semi-deslocamento

0.4 < Fn < 1.1, peso do navio suportado por forças hidrostáticas e de sustentação

Classificação hidrodinâmica dos navios

Embarcações planantes

Fn > 1.1, peso do navio suportado essencialmente por forças de sustentação

Classificação das embarcações rápidas

Características dos navios rápidos / embarcações rápidas

� Velocidades elevadas

� Potências específicas elevadas (consumos específicos elevados)

� Economicamente viáveis para o transporte de carga valiosa em curtas e médiasdistâncias (actualmente!)

� Tendem a ser construídos em materiais leves (aços de alta resistência, alumínio, fibra de vidro e materiais compósitos)

� Tipo de sistema motor: normalmente são motores diesel rápidos, mas também em alguns casos turbinas a gás

Potência específica em função da velocidade paradiversos tipos de veiculos

(1 HP = 0.746 kW)

6.1 – MONOHULLS

Specific characteristics that distinguish the the seakeeping of high speed monohulls from conventional monohulls are:• Lower resistance to the advance in still water and in waves• Frequency and severity of slamming occurrences• Larger accelerations• Important nonlinear effects• Possibility of dynamic instabilities

Important nonlinear effects

Model test results for a fast monohull in head regular waves. U = 27knots, Lw/Lpp = 1.22, Hw/T = 0.40 (from research project WAVELOADS)

Vertical Bending Moment at station 15

-2.0E+04

0.0E+00

2.0E+04

4.0E+04

6.0E+04

time

VB

M (K

Nm

)

Steady VBM

Dynamic instabilities

Figure from Cohen and Blount (1986)

6.2 – CATAMARANS

• Lower resistance to the advance in still water and in waves

• Possibility of dynamic instabilities

• Critical global loads on the cross deck structure

• Possibility of very severe wetdeck impacts

Possibility of severe wetdeck impacts

Critical global loads on the cross deck structure

(Figure from Nordenstromet al., 1971)

6.3 – SMALL WATERPLANE AREA TWIN-HULLS (SWATH)

• Lower resistance to the advance in still water and in waves

• Long natural periods of pitch and heave resulting in low level of accelerations

• Possibility of dynamic instabilities / active control stabilizers

• Critical global loads on the cross deck structure

• Possibility of very severe wetdeck impacts

• Viscous damping associated with vertical motions

Viscous damping associated with vertical motions

( )( )rrDD

v vvCaUxBF += αρ 022

21

Empirical model for estimation vertical viscous forces:

Heave and pitch motion of a SWATH in head regular waves at 20 knots (Lee and Curphey, 1977)Vertical

motion

Lower hull

Viscous force

6.4 – SURFACE EFFECT SHIPS (SES)

• Partly supported by a pressurized cushion of air enclosed between two hulls and flexible seals at bow and stern

• Lower resistance to the advance and better seakeeping characteristics

• Cobblestone effect: resonance pressure variations in the air cushion that occur for small wave periods

• Air leakage from the cushion at higher seastates

(D) Navio de Efeito de Superfície (SES)

6.5 – FOILCATAMARAN

• Catamaran with foils either fully submerged or partly submerged • At high speeds the hulls come out of the water• Much lower resistance to the advance in calm water and small seastates• Fully submerged foils have moving flaps coupled to a ride control system• Lower vertical motions and accelerations in waves

6.6 – PENTAMARAN

• Very slender hull with four sponsons

• Lower resistance to the advance both in still water and in waves

• Better seakeeping behavior than conventional containerships

9.3 Mercado Actual dos Navios Rápidos e Tendências Futuras

Navios de passageiros em serviço em 1999 (Nigel Gee and Associates LTD)

Dimensão e velocidade dos navios de passageiros em serviço em 1999 (Nigel Gee and Associates LTD)

Nota: a tabela inclui navios que transportam 50 ou mais passageiros e com velocidade de serviço mínima de 25 nós

Tendências futuras e possíveis soluções (Nigel Gee and Associates LTD)

Cargeiro transatlântico de alta velocidade (Pentamaran)

Porta-contentores (Pentamaran)

• Testado em 1967• Capacidade de 544 ton• Vel de 280 nós• 13 turbinas de 98 kN

WIG (Wing Ground Effect)

• Cargeiro de alta capacidade• 150 m de envergadura• Capacidade de 1400 ton

WIG (Wing Ground Effect)

Catamaran super esbelto