R E Goldstein

Post on 06-Jan-2016

32 views 1 download

Tags:

description

III. Flagellar Synchronization and Eukaryotic Random Walks. R E Goldstein. www.damtp.cam.ac.uk/user/gold www.youtube.com/Goldsteinlab. Metachronal Waves in Volvox (Side View). Huygens’ Clock Synchronization (1665). Pendulum clocks hung on a common wall synchronize out of phase!. - PowerPoint PPT Presentation

Transcript of R E Goldstein

R E Goldstein

www.damtp.cam.ac.uk/user/gold www.youtube.com/Goldsteinlab

III. Flagellar Synchronization and Eukaryotic Random Walks

Metachronal Waves in Volvox (Side View)

Huygens’ Clock Synchronization (1665)Pendulum clocks hung on a commonwall synchronize out of phase!

Modern version of experiment confirmsthat vibrations in the wall cause thesynchronization.

Schatz, et al. (Georgia Tech)

Bacterial Swimming (E. coli)

Turner, Ryu and Berg (Harvard)

sporadic asynchronies

different frequencies

Early Study of Flagella Synchronisation in Chlamydomonas

%

For different cells:

Rüffer and Nultsch, Cell Motility and the Cytoskeleton 7, 87 (1987)

cis

trans

complete synchrony

22

11

dt

ddt

d

)](cos[A)(

)](cos[A)(

222

111

ttS

ttS

“Phase oscillator” model used in e.g. circadian rhythms, etc.

t2121

strokes offlagella

amplitudes “phases”or angles

naturalfrequencies

Historical Background• R. Kamiya and E. Hasegawa [Exp. Cell. Res. (‘87)] (cell models – demembranated) intrinsically different frequencies of two flagella

• U. Rüffer and W. Nultsch [Cell Motil. (‘87,’90,’91,’98)] short observations (50-100 beats at a time, 1-2 sec.) truly heroic – hand drawing from videos synchronization, small phase shift, occasional “slips”

Without coupling, the phase difference simply grows in time

So, is this seen?

Key issue:control ofphototaxis

The Experiment

Polin, Tuval, Drescher, Gollub, Goldstein, Science (this Friday) (2009)

Goldstein, Polin, Tuval, submitted (2009)

Noisy Synchronization

Polin, Tuval, Drescher, Gollub, Goldstein, in press (2009)

Experimental methods:• Micropipette manipulation with a rotating stage for precise alignment• Up to 2000 frames/sec• Long time series (50,000 beats or more)• Can impose external fluid flow

Micropipette

Cell body

Frame-subtraction

Goldstein, Polin, Tuval, submitted (2009)

A Phase Slip

Interflagellar phase difference Δ of a Chlamydomonas cell at 500 frames/sec

Δ

driftsynchrony

slips

Polin, Tuval, Drescher, Gollub, Goldstein, in press (2009)

Model for Phase Evolution

)()2sin(2 t

Niedermayer, Eckhardt, and Lenz, Chaos (2008)

Spheres forced in circularorbits by an azimuthal force,with elasticity to maintain orbit radius, and sphere-spherehydrodynamic interactions(deterministic)

)(2)()(

0)(

stTst

t

eff

We see clear evidence of stochasticity …which suggests the stochastic Adler equation:

Intrinsicfrequencymismatch

couplingStrength

(hydrodynamics?)

Quasi-universalform for phase oscillators

(Kuramoto)

biochemical noise

Model for Phase Evolution

diffusion

Δ

Veff(Δ)

Slips

Δ(t2) Δ(t1)

Synchrony

Relative probability of +/- slips

Yields the frequency difference Amplitude and autocorrelation function of fluctuations in the synchronised state yields Teff and B

Model Parameters

expected value for intrinsic frequency

difference

estimate of hydrodynamic coupling

Two “gears”

33 al

r

RLr

Direct Demonstration of Chlamydomonas Diffusion

Dexp ~ (0.68±0.11)x10-3 cm2/s

Polin, T

uval, Drescher, G

ollub, Goldstein, in press (2009)

2~ uDSince and u~100 µm/s, there must be a time ~10 s

Dual-View Apparatus Free of Thermal Convection

Drescher, Leptos, Goldstein, Review of Scientific Instruments 80, 014301 (2009)

White LED& shutter

White LED& shutter

Capable of imaging protists from 10 μmto 1 mm, with tracking precision of ~1 micron, @ 20 fps.

Tracking in Detail – A Sharp Turn

Statistics of Sharp Turns: Origin of Diffusion

Turns and drifts have identical statistics,much longer than slips.

Mean free-flight timeis ~11 s

Geometry of Turning

beat

rad4.0

beats16~

2

cos13

2

uD

s

beats10-5

s1-0.5

beats5025

driftT

Turning angle (degrees)90

Pro

bab

ility

(a

ngle

)

Chlamy w/single flagellum,rotating near a surface

Angle per beat -

Frequency difference -

“Drift” duration-

rad/s 4-2

90rad21driftT

Angular velocity

Angular change

Dest ~ (0.47±0.05)x10-3 cm2/s

beat

rad4.0

beats16~

2

Details of Slips

Details of Slips

A Phototurn (V. barberi)

Dre

sch

er,

Le

pto

s, G

old

ste

in, R

ev.

Sci

. In

stru

m. (

200

9)

Adaptive Flagellar Dynamics and the Fidelity of Multicellular Phototaxis

Drescher, Goldstein, Tuval, preprint (2009)

Flagellar Response and Eyespot Size

eye

spo

t dia

me

ter

(mic

rons

)

angle from anterior (degrees)

flag

ella

r re

spo

nse

pro

ba

bilit

y

Dynamic PIV Measurements – Step Response

Angular Dependence of the Transient Response

anterior is sensitiveposterior is not

Velocity Ratio vs. Radius

Systematics of Volvox

Upswimming speed

Settling speed

Spinning frequency

Reorientation time

Drescher, Leptos, Tuval, Ishikawa, Pedley, Goldstein, PRL (2009)

Frequency-Dependent Response

PhototacticColonies haveRotational Frequencies In this band

Tuning!

Metachronal Waves in Volvox (Side View)