Quadratic Equation and In equations (Inequalities ... · PDF fileQuadratic Equation and In...

Post on 30-Jan-2018

227 views 1 download

Transcript of Quadratic Equation and In equations (Inequalities ... · PDF fileQuadratic Equation and In...

Quadratic Equation and In equations (Inequalities)

SUBJECTIVE PROBLEMS:

Q. 1.

Solve for x: 4x ✄ 3

x - 1/2 = 3

x + 1/2 - 2

2x � 1 (IIT JEE ✁ 1978 ✁ 5 Marks)

Q. 2.

If (m, n) = (1 ✄ xm

) (1 ✄ xm � 1

) . . . . . . . . . . . (1 ✄ xm � n + 1

)/ (1 ✄ x) (1 ✄ x2) . . . . . . . . . . . . . (1 ✄ x

n)

Where m and n are positive integers (n ✌ m), show that (m, n + 1) = (m ✄ 1, n + 1) + xm � n � 1

(m ✄ 1, n)

(IIT JEE ✁ 1978 ✁ 6 Marks)

Q. 3.

Solve for x: ✂x + 1 - ✂x ✄ 1 = 1. (IIT JEE ✁ 1978 ✁ 4 Marks)

Q. 4.

Solve the following equation for x:

2 logx a + log ax a + 3 loga2x a = 0, a > 0 (IIT JEE ✁ 1978 ✁ 3 Marks)

Q 5.

Show the square of ☎☛✆✝✞✟ ✠✡

✟✠☛✝☎✡☞✍✟ ✠✡ is a rational number. (IIT JEE ✁ 1978 3 Marks)

Q 6.

Sketch the solution set of the following system of inequalities:

x2 + y

2 ✄ ✎✏ ✑✒✓ ✔✏ ✄ y ✄ ✕✎ ✑ ✒✖ (IIT JEE ✁ 1978 ✁ 4 Marks)

Q7.

Find all integers x for which (IIT JEE ✁ 1978 ✁ 3 Marks)

(5x ✄ 1) < (x + 1)2 < (7x ✄ 3).

Q. 8.

If ✗✘ ✙ ✚✛✜ ✢✣✜ ✛✤✤✢✥ ✤✦ ✧2 + px ★ ✩ ✪ ✫ ✚✬✭ ✮✘ ✯ ✚✛✜ ✢✣✜ ✛✤✤✢✥ ✤✦ ✧2 ★ ✛✧ ★ ✥ ✪ ✫✘ ✜✰✚✱✲✚✢✜ ✳✗ ✴ ✮✵ ✳✗ ✴

✯✵ ✳✙ ✴ ✮✵ ✳✙ ✴ ✯✵ ✶✬ ✢✜✛✷✥ ✤✦ ✸✘ ✩✘ ✛ ✚✬✭ ✥✹

Deduce the condition that the equations have a common root. (IIT JEE ✁ 1979 - Marks)

✺✺✺✻✼✽✾✿❀✾❁✼✻❁❂✿

Show that for any triangle with sides a, b and c

3 (ab + bc + ca) < (a + b + c) 2 < 4 (bc + ca + ab)

When are the first two expressions equal? (IIT JEE ✄ 1979 ✄ 4 Marks)

Given n4 < 10n �✁✂ ☎ �✆✝✞✟ ✠✁✡✆☛✆☞✞ ✆✌☛✞✍✞✂ ✌ ✎ ✏✑ ✠✂✁☞✞ ☛✒☎☛ ✓✌ ✔ ✕✖4 < 10n + 1.

(IIT JEE ✄ 1980 ✄ 5 Marks)

Q 11.

Let y = ✗✘✙✚✛✜✘✙✢✣✜✘✙✢✤✜ (IIT JEE ✄ 1980 ✄ 5 Marks)

Find all the real values of x for which y takes real values.

Q 12.

For what values of m, does the system of equations?

3x + my = m

2x ✥ 5y = 20

Has solution satisfying the conditions x > 0, y > 0 (IIT JEE ✄ 1980 ✄ 5 Marks)

Find the solution set of the system

x + 2y + z = 1;

2x ✦ 3y ✦ w = 2;

✝ ✎ ✧ ★ ✩ ✎ ✧ ★ ✪ ✎ ✧ ★ ✫ ✎ ✧✬ (IIT JEE ✄ 1980 ✄ 4 Marks)

Show that the equation e-sin x ✦e- sin x ✦ 4 = 0 has no real solution. (IIT JEE ✄ 1982 ✄ 2 Marks)

Q 15.

mn squares of equal size are arranged to from a rectangle of dimension m by n, where m and n are

✭✮✯✰✱✮✲ ✭✰✳✴✵✱✶✷ ✸✹✺ ✶✻✰✮✱✵✶ ✹✼✲✲ ✴✵ ✽✮✲✲✵✾ ✿✭✵✼❀❁✴✺✰✱✶❂ ✼❃ ✯❁✵❄ ❁✮❅✵ ✵❆✮✽✯✲❄ ✺✭✵ ✽✺✳✳✺✭ ✶✼✾✵. A

❇❇❇❈❉❊❋●❍❋■❉❈■❏●

natural number is written in each square such that the number written in any square is the arithmetic

mean of the numbers written in its neighbouring squares. Show that this is possible only if all the

numbers used are equal. (IIT JEE ✄ 1982 ✄ 5 Marks)

If one root of the quadratic equation ax2 + bx + c = 0 is equal to the n ✂ th power of the other, then

show that (IIT JEE ✄ 1983 ✄ 3 Marks)

(acn) 1/n + 1 + (an c) 1/n + 1 + b = 0

Q 17.

Find all real values of x which x2 � 3x + 2 > 0 and x

2 � 2x � ✁ ☎ ✆ (IIT JEE ✄ 1983 ✄ 2 Marks)

Q 18.

Solve for x; ✌✝ ✞ ✟✠✡☛☞✍✎✏

+ ✌✝ ✑ ✟✠✡☛☞✍✎✏

= 10 (IIT JEE ✄ 1985 ✄ 5 Marks)

✒✓✔ ✕ ✖ ✗✘ ✙✚✛✚✔✜✢✣✚ ✕✤✤ ✔✚✕✤ ✔✓✓✛✥ ✓✦ ✛✧✚ ✚★✩✕✛✢✓✣ ✪✫ ✬2 ✂ 2a | x ✂a | - 3a2 = 0

(IIT JEE ✄ 1986 ✄ 5 Marks)

Q 20.

Find the set of all x for which 2x/(2x2 + 5x + 2) > 1/(x + 1) (IIT JEE ✄ 1987 ✄ 3 Marks)

✭✚✛ ✮1✘ ✮2 ✕✣✙ ✯1✘ ✯2 be the roots of ax2 + bx + c = 0 and px2 + qx + r = 0 respectively. If the system

✓✦ ✚★✩✕✛✢✓✣✥ ✮1 ✰ ✞ ✮2 ✱ ✪ ✗ ✕✣✙ ✯1 ✰ ✞ ✯2 z = 0 has nontrivial solution, then prove that b2/q2 =

ac/pr. (IIT JEE ✄ 1987 ✄ 3 Marks)

Solve |x2 + 4x + 3 | + 2x + 5 = 0 (IIT JEE ✄ 1988 - 5 Marks)

Q 23.

Let a, b, c be real. If ax2 ✲ ✳✴ ✲ ✵ ✶ ✆ ✷✸✹ ✺✻✼ ✽✾✸✿ ✽✼✼✺✹ ❀ ✸❁❂ ❃❄ ✻✷✾✽✾ ❀ ❅ -1 and ß > 1, then show that

1 + ❆❇✞ ❈

❉❇❈ < 0. (IIT JEE ✄ 1995 ✄ 5 Marks)

❊❊❊❋●❍■❏❑■▲●❋▲▼❏

Find the set of all solutions of the equation (IIT JEE ✄ 1997C ✄ 3 Marks)

2|y| - |2y ✂ 1 � 1| 2y ✂ 1 + 1

Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If

a, b, c and d denote the lengths of sides of the quadrilateral; prove that (IIT JEE ✄ 1997 ✄ 5 Marks)

✁ ✌ ☎2 + b2 + c2 + d2 ✌ ✆✝

✞✟ ✠✡ ☛ ☎☞✍ ✎✏✍ ☞✑✑✎✒ ✑✟ ☎✓2 + bx ✔ ✕ ✖ ✗✡ ✘☎ ✙ ✗✚ ☎✛✜ ☎ ✔ ✢✡ ☛ ✔ ✢ ☎☞✍ ✎✏✍ ☞✑✑✎✒ ✑✟ ✣✓2 + Bx + c = 0, (A

✙ ✗✚ ✟✑☞ ✒✑✤✍ ✕✑✛✒✎☎✛✎ ✢✡ ✎✏✍✛ ✥☞✑✦✍ ✎✏☎✎ ✧2 � 4ac/a2 = B2 � 4AC/A2. (IIT JEE ✄ 2000 ✄ 4 Marks)

★✍✎ ☎✡ ✧✡ ✕ ✧✍ ☞✍☎✩ ✛✪✤✧✍☞✒ ✫✬✎✏ ☎ ✙ ✗ ☎✛✜ ✩✍✎ ✠✡ ☛ ✧✍ ✎✏✍ ☞✑✑✎✒ ✑✟ ✎✏✍ ✍✭✪☎✎✬on

ax2 + bx + c = 0. Express the roots of a3 x2 + abcx + c3 ✖✗ ✬✛ ✎✍☞✤✒ ✑✟ ✠✡ ☛✝

(IIT JEE ✄ 2001 ✄ 4 Marks)

If x2 + (a � b) x + (1 � a � ✧✚ ✖ ✗ ✫✏✍☞✍ ☎✡ ✧ ✮ ✯ ✎✏✍✛ ✟✬✛✜ ✎✏✍ ✦☎✩✪✍✒ ✑✟ ☎ ✟✑☞ ✫✏✬✕✏ ✍✭✪☎✎✬✑✛ ✏☎✒

unequal real roots for all values of b. (IIT JEE ✄ 2003 ✄ 4 Marks)

If a, b, c is positive real numbers. Then prove that (a + 1)7 (b + 1)7 (c + 1)7 > 77 a4 b4 c4

(IIT JEE ✄ 2004 ✄ 4 Marks)

Let a and b the roots of the equation x2 � 10cx � 11d = 0 and those of x2 - 10 ax � 11b = are c, d then

✎✏✍ ✦☎✩✪✍ ✑✟ ☎ ✔ ✧✔ ✕ ✔ ✜✡ ✫✏✍✛ ☎ ✙ ✧✙ ✕ ✙ ✜✡ ✬✒✝ (IIT JEE ✄ 2006 ✄ 6 Marks)

✰✰✰✱✲✳✴✵✶✴✷✲✱✷✸✵

Quadratic Equation and In equations (Inequalities) Solutions

SUBJECTIVE PROBLEMS:

Sol 1.

4x ✄ 3

x � 1/2 = 3

x + 1/2 - (2

2)

x/2

✆✁x ✂ 3x☎✝✞ ✟ ✞x ✝✞ ✂ 4x/2

✆ ✞☎✠ ✁x = 3x ✒✝✞✡ ☛☎✝✞☞ ✆ ✞☎✠ ✁x = 3x ✁☎✝✞

✆✒✁☎✞☞ x � 3/2 = 1 ✆ ✌ ✂ 3/2 = 0

✆ ✌✟ ✞☎✠

Sol 2.

RHS = (m ✄ 1, n + 1) + xm � n � 1

(m ✄ 1, n)

= (1 ✄ xm � 1

) (1 ✄ xm � 2

) . . . . . . (1 ✄ x m � n - 1

) / (1 ✄ x) (1 ✄ x2) . . . . . . . (1 ✄ x

m + 1)

+ x m � n - 1

[(1 ✄ xm � 1

) (1 ✄ xm � 2

) . . . . . . . (1 ✄ xm � n

) / (1 ✄ x) (1 ✄x2) . . . . . (1 ✄ x

n)]

= (1 ✄ xm � 1

) (1 ✄ xm � 2

) . . . . . (1 ✄ xm � n

) / (1 ✄ x) (1 ✄ x2) . . . . . (1 ✄ x

n)

[1 ✄ xm � n - 1

/1 - xn + 1

+ xm � n � 1

]

[1 ✄ xm � n � 1

+ xm � n � 1 ✄ x

m/1 ✄ x

n + 1]

= (1 ✄ xm

) (1 ✄ xm � 1

) . . . . . . (1 ✄ xm � n

)/ (1 ✄ x) (1 ✄ x2) . . . . . (1 ✄ x

n) (1 ✄ x

n + 1)

= (m, n + 1) = L. H. S.

✝x + 1 = 1 + ✝ x ✄ 1

Squaring both sides, we get

x + 1 = 1 + x ✄ 1 + 2 ✝x ✄ 1 ✆ 1 = 2✝x ✄ 1.

✆ ☛✟ ✁✒✌ ✂ 1)

✆ ✌✟ ✍☎✁

✎✎✎✏✑✓✔✕✖✔✗✑✏✗✘✕

Sol 4.

Given a > 0, so we have to consider two cases: a ✌ 1 and a = 1. Also it is cleat that x > 0

And x ✌ 1, ax ✌ �✁ ✂2✄ ✌ �

☎✂✆✝ ✞✟ ✞✠ ✂ ✡ ☛✁ ✌ �

Then given equation can be simplified as

2/log a x + 1/log a x + 3/2 + log a x = 0

Putting log a x = y, we get

2(1 + y) (2 + y) + y (2 + y) + 3y (1 + y) = 0

☞ ✍✎2 + ��✎ ✏ ✑ ✒ ☛ ☞ ✎ ✒ -4/3 and -1/2

☞ ✓✔✕ a x = - 4/3 and log a x = -1/2

☞ ✄ ✒ ✂-4/3 and x = a-1/2

Case II: If a = 1 then equation becomes

2 logx 1 + logx 1 + 3 logx 1 = 6 logx1 = 0

✖✗✘✙✗ ✘✆ ✚✛✜✝ ✢ ✄ ✡ ☛✁ ✌ �

✣✝✤✙✝ ✆✔✓✜✚✘✔✤ ✘✆ ✘✠ ✂ ✒ �✁ ✄ ✡ ☛✁ ✌ �

If a > 0✁ ✌ �✥ ✄ ✒ ✂-1/2, a-4/3

Sol 5.

Let x = ✦✧★✩✪✫✬✭

✫✬✧✩✬✭✮✯✫✬✭

☞ ✄2 = ✧★✩✪✫ ✬✭

✫✰✯✭✮✯✫✬✭✩✪✰ ✦✱★✯✪✰ ✬✭

☞ x2 =

✧★✩✪✫✬✭✮✮ ✯ ✫✬✭✩✪✰ ✦✱✪✯✪✯✪✰ ✬✭

☞✄2 = ✧★✩✪✫ ✬✭

✮✮✯✫✬✭✩✪✰ ✲✳✫✬✭✴✵✯✶✪✷✵✸ ✫✬✭ ✸ ✪

☞x2

= ✧★✩✪✫ ✬✭

✮✮✯✫ ✬✭✩✪✰ ✲✳✫✯✬✭✯✪✴✵

☞✄2 = ✧★✩✪✫✬✭

✮✮✯✫✬✭✩✪✰✶✫✬✭✯✪✷ ☞ x2 =

✧★✩✪✫✬✭✮✮✯✫✬✭✩✫✰ ✬✭✩✪✰ =

✧★✩✪✫✬✭✱✮✩✹✫✬✭ =

✧★✩✪✫✬✭✭✶✧★✩✪✫✬✭✷ = /

✪✭✁ which is rational number.

✺✺✺✻✼✽✾✿❀✾❁✼✻❁❂✿

Sol 6.

x2 + y

2 = 2x ☎ ✄ ✆x

2 � 2x + 1 + y

2 ☎ ✁

✆ (x � 1)2 + y

2 ☎ ✁ ✂✝✞✟✝ represents the boundary and exterior region

of the circle with Centre at (1, 0)

And radius as 1. For 3x � ✠ ✡ ✁☛☞ ✌✝✍ ✟✎✏✏✍✑✒✎✓✔✞✓✕ ✍✖✗✘✌✞✎✓ ✞✑ ✙✚ � y =

12; any two points on it can be

taken as (4, 0), (2, -✛✜✢ ✣✤✑✎ ✒✗✌✌✞✓✕ ✥✄☞ ✄✜ ✞✓ ✕✞✦✍✓ ✞✓ ✍✖✗✘✌✞✎✓☞ ✄ ✡ ✁☛

which true.

✧given in equation represents that half plane region of line 3x � y = 12 which contains origin.

★✎✏ ✠ ✡ ✚☞ ✌✝✍ ✟✎✏✏✍✑✒✎✓✔✞✓✕ ✍✖✗✘✌✞✎✓ ✠ ✩ ✚ ✝✘✑ ✘✓✠ ✌✂✎ ✒✎✞✓✌✑ ✎✓ ✞✌ ✘✑ ✥✄☞ ✄✜ ✘✓✔ ✥✁☞ ✁✜✪ ✣✤✑✎ ✒✗✌✌✞✓✕ ✥☛☞ ✁✜

✫✓ ✌✝✍ ✕✞✦✍✓ ✞✓ ✍✖✗✘✌✞✎✓☞ ✂✍ ✕✍✌ ✁ ✡ ☛ ✂✝✞✟✝ ✞✑ ✌✏✗✍☞ ✑✎ ✠ ✡ ✚ ✏✍✒✏✍✑✍✓✌✑ ✌✝✘✌ ✝✘✤✬ ✒✤✘✓✍ ✂✝✞✟✝ ✟✎✓✌✘✞✓✑ ✌✝✍

✒✎✞✓✌✑ ✥☛☞ ✁✜✪✠ ☎ ✄ ✏✍✒✏✍✑✍✓✌✑ ✗✒✒✍✏ ✝✘✤✬ ✭✘✏✌✍✑✞✘✓ ✒✤✘✓✍✪

Combining all we find the solution set as shaded region in the graph.

Sol 7.

There are two parts of this question

(5x � 1) < (x + 1)2 and (x + 1)

2 and (x + 1)

2 < (7x � 3) Taking first part

(5x � 1) < (x + 1)2 ✆ ✮✯ ✰ 1 < x2 + 2x + 1

✆ ✯2 ✰ ✱✯ ✲ ✳ ✴ ✵ ✆ ✶✯ ✰ 1) (x ✰ 2) > 0

✆ x < 1 or x > 2 . . . . . . . . . . . . . .(1)

Taking second part

(x + 1)2 < (7x � 3) ✆ ✯2 ✰ 5x + 4 < 0

✆ ✶✯ ✰ 1) (x ✰ 4) < 0

✆ 1 < x < 4 . . . . . . . . . . . . . . . . . . . . . . . . (2)

Combining (1) and (2) [taking common solution], we get 2 < x < 4 but x is an integer therefore x = 3.

✷✷✷✸✹✺✻✼✽✻✾✹✸✾✿✼

✆ �✁ ✂ ✄☎✝ ✞✟✝ ☎✠✠✞✡ ✠☛ ☞2 + p x + q = 0

✌ � ✍ ✂ ✎ -✏✁ �✂ ✎ ✑

✆ ✒✁ ✓ ✄☎✝ ✞✟✝ ☎✠✠✞✡ ✠☛ ☞2 + rx + s = 0

✌ ✒ ✍ ✓ ✎ -☎✁ ✒ ✓ ✎ ✡

✔✠✕✁ ✖� ✗ ✒✘ ✖� ✗ ✓✘ ✖✂ ✗ ✒✘ ✖✂ ✗ ✓✘

✎ ✙�2 ✗ ✖✒ ✍ ✓✘ �✍ ✒ ✓✚ ✙✂2 ✗ ✖✒ ✍ ✓✘ ✂ ✍ ✒ ✓✚

✎ �2 ✍ ☎� ✍ ✡✚ ✙✂2 ✍ ☎✂ ✍ ✡✚ ✙✆�✁ ✂ ✄☎✝ ☎✠✠✞✡ ✠☛ ☞2 + p x + q = 0

✌ �2 ✍ ✏� ✍ ✑ ✎ ✛ ✄✜✢ ✂2 ✍ ✏✂ ✍ ✑ ✎ ✛✚

= [(r ✗ p) � ✍ ✖✡ ✗ q)] [(r ✗ p) ✂ ✍ ✖✡ ✗ q)]

= (r ✗ p) 2 � ✂ ✍ ✖☎ ✗ p) (s ✗ ✑✘ ✖� ✍ ✂✘ ✍ ✖✡ ✗ q) 2

= q(r ✗ p) 2 ✗ p(r ✗ p) (s ✗ q) + (s ✗ q) 2

Now if the equations x2 + p x + q = 0 and x2 ✍ ☎ ☞ ✍ ✡ ✎ ✛ ✟✄✣✝ ✄ ✤✠✥✥✠✜ ☎✠✠✞ ✡✄✦ �✁ ✞✟✝✜ �2 ✍ ✏� ✍

✑ ✎ ✛ ✄✜✢ �2 ✍ ☎� ✍ ✡ ✎ ✛

✧�2/ps ✗ ✑ ☎ ✎ �★✑ ✗ s = 1/r - p

✧�2 = ps ✗ q r/r ✗ ✏ ✄✜✢ �✎ ✑ ✗ s/r ✗ p

✧ ✖✑ ✗ s) 2 = (r ✗ p) (ps ✗ q r) which is the required condition.

✩✝ ✪✜✠✕ ✞✟✄✞ ☛✠☎ ✡✫✢✝✡ ✄✁ ✬✁ ✤ ✠☛ ✄ ✭

(a ✗ b) 2 ✮ ✛

✧ ✄2 + b2 ✮ ✯✄✬ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✖✱✘

Similarly b2 + c2 ✮ ✯✬✤ . . . . . . . . . . . . . . . . (2)

C2 + a2 ✮ ✯✤✄ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✰ ✖✲✘

Adding the three in equations, we get

2(a2 + b2 + c2✘ ✮ ✯✖✄✬ ✍ ✬ ✤ ✍ ✤✄✘

✧ ✄2 + b2 + c2 ✮ ✄✬ ✍ ✬ ✤ ✍ ✤✄

✳✳✳✴✵✶✷✸✹✷✺✵✴✺✻✸

Adding 2 (ab + b c + ca) to both sides, we get

(a + b + c) 2 ✌ �✒✁✂ ✄ ✂ ☎ ✄ ☎✁✆

✝✞ � ✒✁✂ ✄ ✂ ☎ ✄ ☎✁✆ ✟ ✒✁ ✄ ✂ ✄ ☎✆ 2 . . . . . . . . . . . (A)

Also c < a + b (triangle inequality)

✠☎2 < ac + b c . . . . . . . . . . . . . . . (4)

Similarly b2 < ab + b c . . . . . . . . . . . . . . (5)

a2 < ab + ca . . . . . . . . . . . . . . . . (6)

Adding (4), (5) and (6), we get a2 + b2 + c2 < 2(ab + b c + ca)

Adding 2 (ab + b c + ca) to both sides, we get

✠✒✁ ✄ ✂ ✄ ☎✆ 2 < 4 (ab + b c + ca) . . . . . . . . . . (B)

Combining (A) and (B), we get

�✒✁✂ ✄ ✂ ☎ ✄ ☎✁✆ ✟ ✒✁ ✄ ✂ ✄ ☎✆ 2 < 4(ab + b c + ca)

First two expressions will be equal for a = b = c.

Sol 10.

Given that n4 < 10

n for n for a fixed + ve integer n ✌2.

To prove that (n + 1)4, 10

n + 1

Proof: Since n4 < 10

n ✠ 10n

4 < 10

n + 1 . . . . . . . . . . . . . . . . . . (1)

So it is sufficient to prove that (n + 1)4 < 10n

4

Now (n + 1/n) 4 = (1 + 1/n)

4 ✟ (1 + 1/2)

4 [✡ n ✌ 2]

= 81/16 < 10

✠ (n + 1)4 < 10n

4 . . . . . . . . . . . . . . . . . . . . . . . . (2)

From (1) and (2), (n + 1)4 < 10

n + 1

☛☛☛☞✍✎✏✑✓✏✔✍☞✔✕✑

Sol 11.

Y = ✌✒☛�✁✂✒☛✄☎✂✒☛✄✆✂

y will take all real values if ✒☛�✁✂✒☛�☎✂☛✄✆ ✝ ✞

By wavy method:->

x ✟ [-1, 2) U [3, ✠)

[2 is not included as it makes denominator zero, and hence y an undefined number.]

Sol 12.

The given equations are 3x + my ✡ m = 0 and 2x ✡ 5y ✡ 20 = 0 Solving these equations by cross product

method, we get

x/-20m ✡ 5m = y/-2m + 60 = 1/-15 ✡ 2m NOTE THIS STEP

☞ ✍ = 25m/2m + 15, y = 2m ✎ 60/2m + 15

✏✑✓ ✍ ✔ ✕☞ ✖✗✘✙✖✘✚ ✛✗ ✔ ✕

☞✘✜ -15/2 or m > 0 . . . . . . . . . . . . . . . . . . . . . . . . .(1)

[using wavy method]:->

For y > 0 ☞ 2(m ✡ 30)/2m + 15 = 0

☞ m < -15/2 or m >

30 . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

[using wavy method]:->

Combining (1) and (2), we get the common values of m as follows:

m < 15/2 or m > 30 ✢ m ✣ (-✠, -15/2) U (30, ✠)

Sol 13.

The given system is

x + 2y + z = 1 . . . . . . . . . . . . (1)

2x ✡ 3y ✡ ✤✥ ✕

Multiplying eqn. (1) by (2) and subtracting from (2), we get

✦✦✦✧★✩✪✫✬✪✭★✧✭✮✫

✄� ✁ ✂☎ ✁ ✆ ✝ ✞ ✟ ✆ ✝ - (7y + 2z)

✠✡☛ ☞✌ �✍ ☎ ✎ ✞✍ ✆ ✏ ✞✑✒✡✓ ✔✡✕✕☞✖✗✘✙

✚✌ � ✝ ✞✍ ☎ ✝ ✞ ✓✛✘✒ ✜ ✝ ✢ ✣✒✤ ✆ ✝ ✞✥

✦✧✛✘ ✡✒✗� ✕✡✗★✓☞✡✒ ☞✕ ✜ ✝ ✢✍ � ✝ ✞✍ ☎ ✝ ✞✍ ✆ ✝ ✞✥

e sin x ✩ e ✪sin x ✩ 4 = 0

Let e sin x = y then e-sin x = 1/y

✦ Equation becomes, y ✫ 1/y ✫ 4 = 0

✟ y2 ✫ 4y ✫ 1 = 0

✟ y = 2 + ✬✭✍ ✂ - ✬✭

But y is real +ve number,

✦� ✮ ✂ - ✬✭ ✟ � ✝ ✂ ✁ ✬✭

✟✘ sin x = 2 + ✬✭ ✟ ✕☞✒ ✜ ✝ ✗✡✯e ✑✂ ✁ ✬✭✙

✰★✓ ✂ ✁ ✬✭ ✎ ✘ ✟ ✗✡✯e ✑✂ ✁ ✬✭✙ ✎ ✗✡✯ e e

✟✗✡✯ e ✑✂ ✁ ✬✭✙ ✎ ✢ ✱✘✒✲✘✍ ✕☞✒ ✜ ✎ ✢

Which is not possible ✦✳☞✴✘✒ ✘✵★✣✓☞✡✒ ✛✣✕ ✒✡ ✶✘✣✗ ✕✡✗★✓☞✡✒✥

Sol 15.

For any square can be at most 4, neighbours squares.

Let for a square having largest number d, p, q, r, s be written then

According to the question,

p + q + r + s = 4d

✟ (d ✫ p) + (d ✫ q) + (d ✫ r) + (d ✫ s) = 0

Sum of four +ve numbers can be zero only if these are zero individually

✦ d ✫ p = 0 = d ✫ q = d - r = d ✫ s

✟ p = q = r = s = d

✟ all the numbers written are same. Hence Proved.

✷✷✷✸✹✺✻✼✽✻✾✹✸✾✿✼

Sol 16.

Let ✂, � be the roots of eq. ax2 + bx + c = 0

According to the question,

✁ ✄ ✂n

☎✆✝✞ ✂ ✌ � ✄ -✟✠✡☛ ✂� ✄ ☞✠✡

✂� ✄ ☞✠✡ ✍ ✂✎ ✂ n ✄ ☞✠✡ ✍✂ ✄ ✏☞✠✡✑ 1/n + 1

then ✂ ✌ � ✄ - ✟✠✡ ✍✂ ✌ ✂n = -b/a

Or (c/a) 1/n + 1 + (c/a) n/n + 1 = -b/a

✍a .(c/a)1/n + 1

+ a .(c/a)n/n + 1

+ b = 0

✍ an/n + 1

c1/n + 1

+ a1/n + 1

c n/n + 1

+ b = 0

✍ ✏✡n c) 1/n + 1 + (can)

1/n + 1 + b = 0 Hence proved.

Sol 17.

x2 ✒ 3x + 2 > 0, x

2 ✒ 3x ✒ ✓ ✔ ✕

✍ (x ✒ 1) (x ✒ 2) > 0 and (x ✒ 4) (x + 1) < 0

✍ x ✖ (-✗, 1) U (2, ✗) and x ✘ [-1, 4]

✙ Common solution is [-1, 1) U (2, 4)]

Sol 18.

The given equation is

✚✛ ✌ ✜✢✣✤✥✦✧★

+ ✚✛ ✩ ✜✢✣✤✥✦✧★

= 10 . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

Let ✚✛ ✌ ✜✢✣✤✥✦✧★

= y . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

Then ✚✛ ✩ ✜✢✣✤✥✦✧★

= ✪✫✬✧✭✮✯✰✫✬✱✭✮✯✰

✬✱✭✮✯ ✲✥✦✧★

= ✪✭✬✧✭✳✬✱✭✮✯

✲✥✦✧★

= ✪✴

✬✱✭✮✯✲✥✦✧★

= 1/y (Using (2))

✙The given equation (1) be becomes y + 1/y = 10

✍ y2 ✒ 10y + 1 = 0

✵✵✵✶✷✸✹✺✻✹✼✷✶✼✽✺

✆� ✁ ✄✂ ☎ ✝✄✂✂-✞✟✠ ✁ ✄✂☎ ✞✝✡✟✠

✆� ☛ 5 + ✠✝✡ ☞✌ ✍ ☛ ✠✝✡

✎✏✑✒✓✔✕✖ ✗ ✘ ✙ ✚ ✛✜✢

✆ ✣✍ ✤ ✠ ✝✡✥✦✧★✩

✁ ✪✍ ✤ ✠✝✡✫

✆ ✬2 ☛ ✭✁ ✄✆ ✬2 ✁ ✞ ✆ ✬ ✁ ☎ ✠

Again consider

y = 5 ☛ ✠✝✡ ✁ ✄✟✍✤ ✠✝✡ ✁ ✪✍✤ ✠✝✡✫-1

✆ ✣✍ ✤ ✠✝✡✥✦✧★✩

✁ ✪✍ ✤ ✠✝✡✫-1 ✆ ✬2 ☛ 3 = -1

✆ ✬2 = 2

✆ ✬ ✁☎ ✝✠ ✮✯✰✱✯ ✲✳✯ ✴☞✵✶✲✷☞✰ ✸✌✯ ✠✹ -✠✹ ✝✠✹ -✝✠✺

Sol 19.

The given equation is,

X2 ✻ 2a |x ✻ a| - 3a

2 = 0

Here two cases are possible

Case I: x ✻ a > 0 then |x ✻ a | = x ✻ a

✼ Eq. Becomes

X2 ✻ 2a(x ✻ a) ✻ 3a

2 = 0

Or x2 ✻ 2ax ✻ a

2 = 0 ✆ x = 2a ± ✝4a

2 + 4a

2/2

✆ ✬ ✁ ✸☎ ✸✝✠

Case II: x ✻ a < 0 then |x ✻ a| = -(x ✻ a)

✼ Eq. becomes

X2 + 2a(x ✻ a) ✻ 3a

2 = 0

Or x2 + 2ax ✻ 5a

2 = 0

✆ ✬ ✁ -✠✸☎ ✝✞✸2 + 20a2/2 ✆ ✬ ✁ -✠✸ ☎ ✠✸✝✡✟✠

x = -✸ ☎ ✸✝✡ ✽✳✶✴ ✲✳✯ ✴☞✵✶✲✷☞✰ ✴✯✲ ✷✴ ✾✸ ☎ ✸✝✠✹ -✸ ☎ ✸✝✡✿

❀❀❀❁❂❃❄❅❆❄❇❂❁❇❈❅

We are given 2x/2x2 + 5x + 2 > 1/x + 1

✆�✁✂�✁2 + 5x + 2 ✄ 1/x + 1 > 0

✆ 2x2 + 2x ✄ 2x2 ✄ 5x ✄ 2/ (2x2 + 5x + 2) (x + 1) > 0

✆ -3x -2/ (2x + 1) (x + 1) (x + 2) > 0

✆ ✒☎✁ ✝ �✞✂ ✒✁ ✝ ✟✞ ✒✁ ✝ �✞ ✒�✁ ✝ ✟✞ ✌ ✠

✆ ✒☎✁ ✝ �✞ ✒✁ ✝ ✟✞ ✒✁ ✝ �✞ ✒�✁ ✝ ✟✞✂ ✒✁ ✝ ✟✞2 (x + 2)2 (2x + 1)2 < 0

✆ ✒☎✁ ✝ �✞ ✒✁ ✝ ✟✞ ✒✁ ✝ �✞ ✒�✁ ✝ ✟✞ ✌ ✠ . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

NOTE THIS STEP: Critical pts. Are x = -2/3, -1, -2, -1/2 on number line

Clearly Inequality (1) holds for,

✁ ✡ ✒-2, -1) U (-2/3, -✟✂�✞ ☛☞✍ ✁ ✎ -2, -1, -2/3, -1/2]

✏✑ ☞✓✑ ✔✕✖✑✗ ✘✙☞✘ ✚1✛ ✚2 are the roots of

ax2 + bx + c = 0

✜ ✚1 ✝ ✚2 = -✢✂☞✣ ✚1 ✚2 = c/a . . . . . . . . . . . . . (1)

✤✗✥ ✦1✛ ✦2 are the roots of px2 + qx + r = 0

✜ ✦1 ✝ ✦2 = -✧✂★✣ ✦1 ✦2 = r/p . . . . . . . . . . . . . . . . . (2)

✩✙✑ ✍✪✍✘✑✫ ✬✭ ✑✧✮☞✘✕✬✗✍✛ ✚1 ✪ ✝ ✚2 z = 0

✤✗✥ ✦1 ✪ ✝ ✦2 z = 0 has a non trivial solution.

✜✯✑ ✫✮✍✘ ✙☞✖✑ ✰✚1 ✦1 ✚2 ✦2| = 0

NOTE THIS STEP:

✆✚1 ✦2 ✄ ✚2 ✦1 ✱ ✠✆ ✚1/ ✚2 ✱ ✦1✂✦2

By componendo and dividend, we get

✚1 + ✚2/ ✚1 - ✚2 = ✦1 + ✦2/ ✦1 - ✦2

✲✲✲✳✴✵✶✷✸✶✹✴✳✹✺✷

✆ �✁1 + ✁2) (✂1 - ✂2✒ ✄ �✁1 - ✁2) (✂1 + ✂2)

✆�✁1 + ✁2)2 [(✂1 - ✂2)2 - 4✂1 ✂2]

✄ ✌�✁1 + ✁2)2 ☎ ✝ ✁1✁2] (✂1 + ✂2)2

Using equations (1) and (2) we get

b2 /a2 [q2/p2 ☎ 4r/p] = q2/p2 [b2/a2 ☎ 4c/a]

✆✞2 q2 /a2 p2 ☎ 4b2r/a2r = q2 b2/q2 a2 ☎ 4cq2/ap2 ✆ -4b2 r/a2 p = -4cq2/ap2 ✆✞2r/a = sq2✟✠ ✆ b2/q2

= ac/p r Hence Proved

The Given equation is,

|x2 + 4x + 3 | + 2x + 5 = 0

Now there can be two cases.

Case I: x2 ✡ ✝☛✡ ☞ ✍ ✎ ✆ �☛ ✡ ✏✒ �☛ ✡ ☞✒ ✍ ✎

✆ ☛✑ �- ✓✔ -☞✕ ✖ ✌-✏✔ ✓✒ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ �✘✒

Then given equation becomes,

✆☛2 + 6x + 8 = 0

✆�☛✡ ✝✒ �☛ ✡ ✙✒ ✄ ✎ ✆ ☛ ✄ -4, -2

But x = -2 does not satisfy (i), hence rejected

✚ ☛ ✄ -4 is the sol.

Case II: x2 + 4x + 3 < 0

✆�☛✡ ✏✒ �☛ ✡ ☞✒ ✛ ✎

✆ ☛✑ �-3, -1) . . . . . . . . . . . . . . . . . . . . (ii)

Then given equation becomes,

-(x2 + 4x + 3) + 2x + 5 = 0

✆ -x2 ☎ ✙☛ ✡ ✙ ✄ ✎ ✆ ☛2 + 2x ☎ 2 = 0

✆ ☛ ✄ -✙✜✢✝ ✡ ✣✟✙ ✆ ☛ ✄ -✏ ✡ ✢☞✔ -1 - ✢☞

Out of which x = -1 - ✢☞ ✘✤ ✤✥✦✗ Combining the two cases we get the solutions of given equation as

x= -4, -1 - ✢☞✗

✧✧✧★✩✪✫✬✭✫✮✩★✮✯✬

Given �✁✂� ✄☎✆ ✂✝ ✞✝ ✟ ✠ ✡✝ ✂☛2 ✌ ✞☛✌ ✟ ☞ ✍ ✁✂✎ �✏☎ ✆✑✂✒ ✆☎☎�✎ ✓ ✂✔✕ ✖✝ ✏✁✑✆✑ ✓ ✗ -1 and ß > 1. There

may be two cases depending upon value of a, as shown below.

In each of cases (i) and (ii) of (-1) < 0 and of (1) < 0

✘ a (a ✙ b + c) < 0 and a (a + b + c) < 0

Dividing by a2 (>0), we get

1 ✙ b/a + c/a < 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

And 1 + b/a + c/a < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

Combining (1) and (2) we get

1 + ✚✛✜✚ +

✢✜ < 0 or 1 +

✢✜ + ✚

✛✜✚ < 0 Hence Proved.

The given equation is,

2|y| - |2y ✣ 1 - 1| = 2y ✣ 1 + 1

On the basis of absolute values involved here (|y| and | 2y ✤ 1 ✤ 1), there are two critical pts 0 and l.

So we shall consider three cases, when y lies in three different intervals namely (- ✥✝ ✍✦✝ ✧✍✝ ★✩✝

(1,✥✦

✪✂✎✑ ✫✬ ✭✠ ✮- ✥✝ ✍✦ �✁✑✔

|y| = -y and |2y-1 -1| = 1 ✤ 2y ✣ 1

✯✰✁✑ ✱✲✳✑✔ ✑✴✵✂�✲☎✔ ✞✑✟☎✶✑✎

2-y ✤ 1 + 2y ✣ 1 = 2y ✣ 1 + 1

✘ ✷-y ☞✷✘ ✭ ☞ -★ ✠ ✮- ✥✝ ✍✦

✪✂✎✑ ✫✫✬ ✭ ✠ ✧✍✝ ★✩

If y = 0 we get 1 - |1/2 ✤ 1| = 1/2 + 1

1 ✤ 1/2 = 1/2 + 1 (not satisfied)

✸✸✸✹✺✻✼✽✾✼✿✺✹✿❀✽

✆� ✁ ✄ ✂☎ ✝✞✟ ✠ ☎✞✡ n

If y = 1 we get 2 - |20 ☛ 1| = 20 + 1

☞ ✌ ✁ ✌ ✍☎✠✟✂☎✎✂✏✑✒

✆ � ✁ ✓ ✂☎ ✠ ☎✞✡ n

✔✎ � ✕ ✍✄✖ ✓✒ ✟✗✏✝ ✘�✘ ✁ � ✠✝✑ ✘✌y - 1 ☛ 1| = 1 ☛ 2y-1

✆the eq. n becomes

2y ☛ 1 + 2y ✙ 1 ✚✓ ☞ ✌y = 2

☞ � ✁ ✓ ✛ ✍✄✖ ✓✒

✆ � ✁ ✓ ✂☎ ✟✗✏ ✞✝✡� ☎✞✡ n in this case.

✜✠☎✏ ✔✔✔✢ � ✕ ✍✓✖ ✣✒

Then |y| = 1, |2y ✙ 1 ☛ 1| = 2y ✙ 1 ☛ 1

The given eq. n becomes, 2y ☛ 2y - 1 + 1 = 2y ✙ 1 + 1

☞ ✌y ☛ 2y = 0

✤✗✂✥✗ ✂☎ ☎✠✟✂☎✎✂✏✑ ✎✞✦ ✠✡✡ ✦✏✠✡ ✧✠✡★✏☎ ✞✎ � ✩★✟ � ✕ ✍✓✖ ✣✒

✆ ✍✓✖ ✣✒ ✂☎ ✟✗✏ ☎✞✡ n in this case.

Combining all the cases, we get the sol n ✠☎ � ✕ ✪✓✫ ✬ ✭✓✖ ✣✮

a2 = p2 + s2, b2 = (1 ☛ p) 2 + q2

c2 = (1 ☛ q) 2 + (1 ☛ r) 2, a2 = r2 + (1 ☛ s) 2

✆ ✠2 + b2 + c2 + d2 = {p2 + (1 + p) 2} + {q2 ☛ (1 ☛ q) 2} + {r2} + (1 ☛ r) 2} + {s2 + (1 ☛ s) 2}

Where p, q, r, s all vary in the interval [0, 1].

Now consider the function

y2 = x2 + (1 ☛ x) 2✖ ✄ ✯ ✰ ✯ ✓✖

2y d y/dx = 2x ☛ 2(1 ☛ x) = 0

☞ ✰ ✁ ✓✱✌ ✲✗✂✥✗ ✑2 y/dx2 = 4 i.e. +ve

✳✏✝✥✏ � ✂☎ ✴✂✝✂✴★✴ ✠✟ ✰ ✁ ✓✱✌ ✠✝✑ ✂✟✵☎ ✴✂✝✂✴um

✶✶✶✷✸✹✺✻✼✺✽✸✷✽✾✻

Value is 1/4 + 1/4 = 1/2

Clearly value is maximum at the end pts which is 1.

✆ �✁✂✁✄☎✄ ✝✞✟☎✠ ✡☛ ✞2 + b2 + c2 + d2 = 1/2 + 1/2 + 1/2 + 1/2 = 2

And maximum value is 1 + 1 + 1 + 1 = 4. Hence proved.

ALTERNATE SOLUTION:

x 2 + y2 ✌ ☞✍ ✎ ✏✑ 2 ✌ ✒ ✁☛ ✍ ✎ ✏ = 1

Here x = p, y = 1 ✓ ✔ ✆ ✍ ✎ ✏ ✕ ✒

✆ ✞2 + b2 + c2 + d2 ✌✒ ✎ ✒ ✎ ✒ ✎ ✒ ✕ ✖

Again x2 + y2 = (x + y) 2 ✓ 2xy = 1 ✓ 2xy

✗✘✙✚ ✙✛✜✢ ✢✙✚✣✤ ✆ �✁✂✁✄☎✄ ✡☛ ☞✍2 + y2) = 1 ✓ 2(maximum of xy).

Now we know that product of two quantities xy is maximum when the quantities are equal

provided their sum is constant.

Here x + y = p + 1 ✓ p = 1 = constant.

✆✍✏ ✁✥ ✄✞✍✁✄☎✄ ✦✧✠✂ ✍★✒ ✕ ✏★✒ ✕ ✍ ✎ ✏★✩ ✕ ✒★✩

✆ ✍ ✕ ✒★✩✪ ✏ ✕ ✒★✩

Minimum of x2 + y2 = 1 ✓ 2. 1/2. 1/2 = 1 ✓ 1/2 = 1/2

✆ �✁✂✁✄☎✄ ✝✞✟☎✠ ✡☛

a2 + b2 + c2 + d2 = 1/2 + 1/2 + 1/2 + 1/2 = 2

✆✩ ✌ ✞2 + b2 + c2 + d2 ✌ ✖✫

We know that,

☞✬ ✓ ✭✑ 2 ✕ ✮☞✬ ✎ ✯✑ ✓ ☞✭ ✎ ✯✑✰ 2

✱ ☞✬ ✎ ✭✑ 2 - ✖✬ ✭ ✕ ☞✬ ✎ ✯✎ ✭ ✎ ✯✑ 2 - ✖☞✬ ✎ ✯✑ ☞✭ ✎ ✯✑

✱✲2/a2 ✓ 4c/a = B2/A2 ✓ ✖✳★✴ ✱ ✖✞✵ ✓ b2/a2 = 4AC ✓ B2/A2

✮✛✠✂✵✠ ✬ ✎✭ ✕ -✲★✞✪ ✬ ✭ ✕ ✵★✞

☞✬ ✎ ✯✑ ☞✭ ✎ ✯✑ ✕ - ✶★✴ ✞✂✷ ☞✬ ✎ ✯✑ ☞✭ ✎ ✯✑ ✕ ✳★✴✰ Hence proved.

✸✸✸✹✺✻✼✽✾✼✿✺✹✿❀✽

✂ � ✁ ✄ -☎✆✝✞ ✂✁ ✄ ✟✆✝

Roots if the equation a3 x3 + abcx + c3 = 0 are

x = - ✝☎✟ ✠ ✡ ☛✝☎✟☞ 2 ✌ 4a3 c3/2a3

= (-☎✆✝☞ ☛✟✆✝☞ ✠ ✡ ☛☎✆✝☞ 2 (c/a) 2 ✌ 4(c/a) 3 / 2

☛✂ � ✁☞ ☛✂ ✁☞ ✠ ✡ ☛✂ � ✁☞ 2 ☛✂✁☞ 2 ✌ ✍☛✂✁☞ 3 / 2

✄ ☛✂ ✁☞ ☛☛✂ � ✁☞ ✠ ✡ ☛✂ ✌ ✁☞ 2 / 2

✄ ☛✂ ✁☞ ☛☛✂ � ✁☞ ✠ ☛✂ ✌ ✁☞✆✎ ✄ ✂2 ✁✞ ✂ ✁2

✏✑✒ ✓ ✝✔✕ ✖ ☎✑ ✒✗✑ ✘✑✙✚✛✘✑✕ ✘✜✜✒✢✣ ✤✗✑✔

✓ ✄ ✂2 ✁ ✝✔✕ ✖ ✄ ✂ ✁2.

ALTERNATE SOLUTION:

ax2 �☎✥ � ✟ ✄ ✦ ✗✝✢ ✘✜✜✒✢ ✂ ✝✔✕ ✁✣ ☛✧✛★✑✔☞

✩ ✂ �✁ ✄ -☎✆✝ ✝✔✕ ✂ ✁ ✄ ✟✆✝

Now, a3 x2 + abcx + c3 = 0

Divides the equation by c2, we get

a3 /c2 x2 + abcx/c2 + c3/c2 = 0, a (ax/c) 2 + b (ax/c) + c = 0

✩ ✝✥✆✟ ✄ ✂✞ ✁ ✝✘✑ ✒✗✑ ✘✜✜✒✢

✩ ✥ ✄ ✟✆✝ ✂✞ ✟✆✝ ✁ ✝✘✑ the roots

✩ ✥ ✄ ✂ ✁ ✂✞ ✂ ✁ ✁ ✝✘✑ ✒✗✑ ✘✜✜✒✢

✩✥ ✂2 ✁✞ ✂ ✁2 are the roots

ALTERNATE SOLUTION:

Divide the equation by a3, we get

x 2 + b/a. c/a. x + (c/a) 3 = 0

✩✥ 2 ✌ ☛✂ � ✁☞ ☛✂ ✁☞ ✥ � ☛✂ ✁☞ 3 = 0 ✩ ✥ 2 ✌ ✂2 ✁✥ - ✂ ✁2 ✥ � ☛✂ ✁☞3 = 0

✩✥ ☛✥ ✌ ✂2 ✁☞ - ✂ ✁2 (x ✌ ✂2 ✁☞ ✄ ✦ ✩ ☛✥ ✌ ✂2 ✁☞ ☛✥ - ✂ ✁2) = 0

✩ ✥ ✄ ✂2 ✁✞ ✂ ✁2 which is the required answer.

✪✪✪✫✬✭✮✯✰✮✱✬✫✱✲✯

The given equation is,

x 2 + (a ✂ b) x + (1 ✂ a ✂ b) = 0

�✁ ✄ ☎ ✆ ✝✞✟ ✠✡☛ ☛☞✌ n ✠✞ ✡�✍☛ ✎✏☛☞✎�✑ ✟☛�✑ ✟✞✞✠✒ ✓ ✄ ✔ ✕ ✖

✗ ✘� ✂ b) 2 ✂ 4 (1 ✂ a ✂ b) > 0

✗ �2 + b 2 ✂ 2ab -4 + 4a + 4b > 0

✗ ✄2 + b (4 ✂ 2a) + a2 + 4a ✂ 4 > 0

✙✡✚✛✡ ✚✒ � ☞✎�✜✟�✠✚✛ ☛✢✣✟☛✒✒✚✞✏ ✚✏ ✄✁ �✏✜ ✚✠ ✤✚✑✑ ✄☛ ✠✟✎☛ ✓ ✄ ☎ ✆ ✚✥ ✜✚✒✛✟✚✦✚✏�✏✠ ✞✥ �✄✞✍☛ ✞✥ �✄✞✍☛

eq. n less than zero.

i.e., (4 ✂ 2a) 2 ✂ 4(a2 + 4a ✂ 4) < 0

✗ ✘✧ ✂ a) 2 ✂ (a2 + 4a ✂ 4) < 0

✗ ★ ✂ 4a + a2 ✂ a2 ✂ 4a + a < 0

✗ - 8a + 8 < 0 ✗ � ✕ ✩

Given that a, b, c are positive real numbers. To prove that (a + 1)7 (b + 1)7 (c + 1)7 > 77 a4 b4 c4

Consider L. H. S. = (1 + 7)7. (1 + b)7. (1 + c) 7

= [(1 + a) (1 + b) (1 + c)] 7

[1 + a + b + c + ab + bc + ca + abc] 7 > [a + b + c + ab + bc + ca + abc] 7 . . . . . . . . . . . . . . .(1)

✪✞✤ ✤☛ ✫✏✞✤ ✠✡�✠ ✬✭ ✮ ✯✭ ✎✒✚✏✰ ✚✠ ✥✞✟ ✱ ✍☛ ✏✞✲✒ �✁ ✄✁ ✛✁ �✄✁ ✄✛✁ ✛� �✏✜ �✄✛✁ ✤☛ ✰☛✠

✗ ✘� ✱ ✄ ✱ ✛ ✱ �✄ ✱ ✄✛ ✱ ✛� ✱ �✄✛✳ 7 ✮ ✴7 (a4 b4 c4) a

From (1) and (2), we get

[(1 + a) (1 + b) (1 + c)]7 > 77 a4 b4 c4

Hence proved.

✵✵✵✶✷✸✹✺✻✹✼✷✶✼✽✺

Roots of x2 ✂ 10cx ✂ 11d = 0 are a and b

✆ � ✁ ✄ ☎ ✝✞✟ �✠✡ �✄ ☎ -11d

Similarly c and d are the roots of x2 ✂ 10ax ✂ 11b = 0

✆✟ ✁ ✡ ☎ ✝✞� �✠✡ ✟✡ ☎ -11b

✆ � ✁ ✄ ✁ ✟ ✁ ✡ = 10(a + c) and abcd = 121 bd

✆✄ ✁ ✡ ☎ ☛✒� ✁ ✟✌ �✠✡ �✟ ☎ ✝☞✝

Also we have a2 ✂ 10 ac ✂ 11d = 0 and c2 ✂ 10ac ✂ 11b = 0

✆ �2 + c2 ✂ 20ac ✂ 11(b + d) = 0

✆ ✒� ✁ ✟✌ 2 ✂ 22 x 121 ✂ 99 (a + c) = 0

✆ � ✁ ✟ ☎ ✝☞✝ ✍✎ ✂ 22

For a + c = -22, we get a = c

✏ ✎✑✓✑✟✔✕✠✖ this value we have a + c = 121

✏ � ✁ ✄ ✁ ✟ ✁ ✡ ☎ ✝✞ ✒� ✁ ✟✌

✗✗✗✘✙✚✛✜✢✛✣✙✘✣✤✜