Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Post on 12-Feb-2017

251 views 5 download

Transcript of Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

John M. FurlanGIW Industries, USAPresented by:John M. Furlan

Pumping a 100‐600 Pa Yield Stress Clay Slurry with a Centrifugal Pump

Robert J. VisintainerGIW Industries, USA

Anders SellgrenLulea Univ. of Tech., Sweden

Effects of Non‐Newtonian Slurries on Pump Performance

Performance for a 0.31 m diameter closed impeller pump while moving a tailings product, Solids concentration by volume of 47 and 49 % (Sellgren et al., 2011)

Slurry Test Schematic – GIW Hydraulic Lab

• 3 vane, 0.31 m Impeller Diameter• 0.1016 m suction• 0.0762 m line discharge• Diff. Pressure measured across

pump and 3 m horizontal section • Torque Bar• Tachometer• RTD Temperature read in tank• Magnetic Flow Meter• S.G. loop removed at high 

yield stress values to reduce pipe friction   higher % BEPQ

• Phosphate Clay, D93 = 20 um,D98 = 200 um

Tank Arrangement

Slurry Test Rig – GIW Hydraulic Lab

Results‐ Rheograms

3 ' 1 84 '

du n Vdy n D

Results‐ Pump Performance, varying Slurry

All Scaled to 1778 rpm

Results‐ Pump Performance, varying Speed

All Scaled to 1778 rpm, Slurry A

Results‐ Pump Performance, varying Speed and Slurry

All Scaled to 1778 rpm

Discussion/Analysis

( )1 y naµ k

2

Re impp

D

Solids Effects on Performance, HI Standard

Newtonian Viscosity Effects on Performance, HI Standard 

Discussion/Analysis‐ Comparisons with Models

Head and Efficiency Derates Compared to Walker and Goulas, Slurry A, 50 % BEPQ

Discussion/Analysis‐ Comparisons with Models

• Sellgren and Addie (1990) looked at ways to find apparent viscosity from pump dimensions• Head and Efficiency Derates Compared to Graham et al. 2007:

42( )

imph

imp

w DD

D w

V   8V/D   a H.I. 9.6.7-2010 HR, ER

Graham et al. method with w=0.25.Dimp= 0.078 m to the phosphate clay results here at 80 m3/hr HR = 0.85 and 0.82 for 1800 and 1450 rpm, respectively.  The corresponding measured head ratios were 0.93 and 0.87, which would require w’ values of 0.041 m and 0.049 m in order to match the experimental head data.  The actual width, w, for the pump used in the experiments is 0.028m. 

Discussion/Analysis‐ Comparisons with Models

Head and Efficiency Derates Compared to Graham et al., w’=0.041, W&G, Slurry A 

Conclusions• By removing entrained air using a modified tank, phosphate clay slurries with 

Bingham yield stress values of 100‐600 Pa were able to be pumped.

• Derating in efficiency was generally larger than that for head. 

• Deratings depended more strongly on the rotary speed than on the yield stress.

• Literature from loop tests with thickened tailings which are rheologically comparable may confirm an airlock effect during loop testing.  

• Modeling approaches have been briefly discussed:  Walker &  Goulas, Graham et al.

• Future work• Thickened tailings two‐component behavior compared to clays calls for a 

repeated test now with authentic tailings. • CFD modeling of transient full machine pumping a Bingham Plastic fluid.

Acknowledgements

Special thanks to John Tyler Leonard and Travis Basinger of GIW Industries for allof their work related to the experimental setup and data acquisition.   

Questions

???

Slurry Test Rig – GIW Hydraulic Lab

Cooling Troughs packed with ice

Slurry Pot/ Pressure TapsMagnetic Flow Meter