Protostellar Disks: Birth, Life and Death

Post on 16-Jan-2016

24 views 0 download

Tags:

description

National Aeronautics and Space Administration. Protostellar Disks: Birth, Life and Death. Neal Turner Jet Propulsion Laboratory, California Institute of Technology. The Life of Protostellar Disks. Jets and Winds Basic disk properties - PowerPoint PPT Presentation

Transcript of Protostellar Disks: Birth, Life and Death

Neal Turner Jet Propulsion Laboratory, California Institute of Technology

Protostellar Disks: Protostellar Disks: Birth, Life and DeathBirth, Life and Death

National Aeronautics and Space Administration

The Life of Protostellar Disks

1. Jets and Winds2. Basic disk properties3. Angular momentum transport4. Evolution of the solids

National Aeronautics and Space Administration

National Aeronautics and Space Administration

Hartigan et a

l. 1995 / A

ntoniucci et al. 2008

National Aeronautics and Space Administration

McKee & Ostriker 2007

National Aeronautics and Space Administration

Pyo et al. 2005

National Aeronautics and Space Administration

Zinnecker et al. 1998

National Aeronautics and Space Administration

Takam

i et al. 2001

National Aeronautics and Space Administration

Burrow

s et al. 199

6

National Aeronautics and Space Administration

C. Lad

a 1985

National Aeronautics and Space Administration

Girart et al. 2006

National Aeronautics and Space Administration

Tam

ura et al. 1999

National Aeronautics and Space Administration

T. R

ay et al. 1997

National Aeronautics and Space Administration

Johns-Krull 2007

National Aeronautics and Space Administration

Ferreira et al. 2006

National Aeronautics and Space Administration

Spruit 1996National Aeronautics and Space Administration

Anderson et al. 2003

Size of the Launching Region?

Jet power = Rate of work done against the magnetic torque= (Footpoint orbital frequency) x (Angular momentum flux):

v p,∞2

2= Ω0ϖ∞vφ ,∞

Infer launching region lies 0.3 to 4 AU from the star.

Assumes energy and momentum conserved along streamlines.

National Aeronautics and Space Administration

Y. Kato 2004

National Aeronautics and Space Administration

Nakam

ura &

Li 20

07

Outflow-Driven Turbulence 1

National Aeronautics and Space Administration

Outflow-Driven Turbulence 2

Cloud kinetic energy vT2 dissipates on a crossing time R/vT, so

the outflows can provide the stirring if

With R=10 pc, vT=10 km s-1, f=0.01, vJ=300 km s-1 and jet mass flow rate 10-7 Solar masses per year,

the outflows are sufficient to power the turbulence.

i.e., if the outflow kinetic luminosity is greater than the dissipation rate in the gas associated with the star.

M•

J vJ2 >

M*vT2

f

vT

R

National Aeronautics and Space Administration

Basic Disk Properties

National Aeronautics and Space Administration

Hartmann & Kenyon 1996National Aeronautics and Space Administration

M. Simon et al. 2000

National Aeronautics and Space Administration

Andrews & Williams 2007National Aeronautics and Space Administration

Andrews & Williams 2007National Aeronautics and Space Administration

Origins of the Surface Density Profile

In steady-state Shakura-Sunyaev -disk,

Σ ~M

ν~

M•

Ωμ

αT~ R−1

if irradiation controls the temperature profile.

National Aeronautics and Space Administration

Weidenschillin

g 1977

National Aeronautics and Space Administration

Dullemond et al. 2007National Aeronautics and Space Administration

Dullemond et al. 2007National Aeronautics and Space Administration

Dullemond et al. 2007National Aeronautics and Space Administration

Bergin et al. 2007National Aeronautics and Space Administration

K. R. Bell et al. 1995National Aeronautics and Space Administration

Hartmann et al. 1993National Aeronautics and Space Administration

Angular Momentum Transport

National Aeronautics and Space Administration

1. Gravitational Instability1. Gravitational Instability

National Aeronautics and Space Administration

1. Gravitational Instability1. Gravitational Instability

National Aeronautics and Space Administration

Small disturbances grow if

r

H

M

r

Σ

*

2

National Aeronautics and Space Administration

Gam

mie 2001

National Aeronautics and Space Administration

Gam

mie 2001

National Aeronautics and Space Administration

Mejia et al. 2005

With slower cooling, instability leads to sustained accretion.

National Aeronautics and Space Administration

Balbus &

Haw

ley 1991

2. M

agn

eto

-Ro

tati

on

al

2. M

agn

eto

-Ro

tati

on

al

Tu

rbu

len

c eT

urb

ule

nce

National Aeronautics and Space Administration

Az

c

v 2B

albus & H

awley 1991

2. M

agn

eto

-Ro

tati

on

al

2. M

agn

eto

-Ro

tati

on

al

Tu

rbu

len

c eT

urb

ule

nce

National Aeronautics and Space Administration

National Aeronautics and Space Administration

Ga

mm

ie 1

99

6

Na

tion

al A

ero

na

utic

s a

nd

Sp

ace

Ad

min

istr

atio

n

Three Ways to Lose Magnetic Flux

National Aeronautics and Space Administration

Ionization ProcessesIonization Processes

Stellar X-Rays

Interstellar Cosmic Rays

Long-Lived Radionuclides

At 1 AU in the minimum mass

Solar nebula

Midplane ionisation is weak!

Short-Lived Radionuclides

National Aeronautics and Space Administration

Wardle 2007National Aeronautics and Space Administration

1

2Azv

Sa

no

& S

ton

e 2

00

2b

MRI turbulence requires

National Aeronautics and Space Administration

1 m Grains

National Aeronautics and Space Administration

No Grains

National Aeronautics and Space Administration

H. Li et al. 2001

P

National Aeronautics and Space Administration

Lodato & Clarke 2004National Aeronautics and Space Administration

Evolution of the Solids

National Aeronautics and Space Administration

van Boekel et al. 20

04

Na

tion

al A

ero

na

utic

s a

nd

Sp

ace

Ad

min

istr

atio

n

van Boekel et al. 20

04

Na

tion

al A

ero

na

utic

s a

nd

Sp

ace

Ad

min

istr

atio

n

TEM image of a thin-sectioned Wild 2 grain consisting of enstatite with exsolution lamellae of diopside, formed from a melt (H. Leroux)

National Aeronautics and Space Administration

Natta et al. 20

07

ResolvedUnresolved

National Aeronautics and Space Administration

Furlan et al. 200

6

National Aeronautics and Space Administration

Da

hm

& H

illen

bra

nd

20

07

National Aeronautics and Space Administration

Du

llem

on

d &

Do

min

ik 20

04

Set

tlin

g is

rap

id in

a la

min

ar d

isk

Set

tlin

g is

rap

id in

a la

min

ar d

isk

National Aeronautics and Space Administration

A Rough Estimate of Grain Growth Timescales

Particles settle at the terminal speed, with the force of gravity balancing the force of the gas molecules striking from below:

Particles remain compact spheres.

Particles grow by sweeping up smaller, stationary grains:

dz

dt= vsett =

−mg

ρcsσ

dm

dt=10−2 ρvsettσ

National Aeronautics and Space Administration

Settling Only

National Aeronautics and Space Administration

Settling & Sweeping

National Aeronautics and Space Administration

Particle growth: extreme cases

BPCA

Ballistic Particle-Cluster Agglomeration

ballistic hit-and-stick impacts of single dust particles into growing

dust agglomerate

BCCA

Ballistic Cluster-Cluster Agglomeration

ballistic hit-and-stick collisions between equal-mass dust

agglomerates

i = 1,024 i = 1,024From J. Blum

National Aeronautics and Space Administration

BPCAN=2

From J. Blum

National Aeronautics and Space Administration

BPCAN=4

From J. Blum

National Aeronautics and Space Administration

BPCAN=8

From J. Blum

National Aeronautics and Space Administration

BPCAN=16

From J. Blum

National Aeronautics and Space Administration

BPCAN=32

From J. Blum

National Aeronautics and Space Administration

BPCAN=64

From J. Blum

National Aeronautics and Space Administration

BPCAN=128

From J. Blum

National Aeronautics and Space Administration

BPCAN=256

From J. Blum

National Aeronautics and Space Administration

BPCAN=512

From J. Blum

National Aeronautics and Space Administration

BPCAN=1024

From J. Blum

National Aeronautics and Space Administration

BCCAN=2

From J. Blum

National Aeronautics and Space Administration

BCCAN=4

From J. Blum

National Aeronautics and Space Administration

BCCAN=8

From J. Blum

National Aeronautics and Space Administration

BCCAN=16

From J. Blum

National Aeronautics and Space Administration

BCCAN=32

From J. Blum

National Aeronautics and Space Administration

BCCAN=64

From J. Blum

National Aeronautics and Space Administration

BCCAN=128

From J. Blum

National Aeronautics and Space Administration

BCCAN=256

From J. Blum

National Aeronautics and Space Administration

BCCAN=512

From J. Blum

National Aeronautics and Space Administration

BCCAN=1024

From J. Blum

National Aeronautics and Space Administration

Radial Drift

Hot, Dense

Cold, Less

Dense

National Aeronautics and Space Administration

Radial Drift

Hot, Dense

Cold, Less

Dense€

vφ2 = vK

2 +R

ρ

∂P

∂R

≈ vK2 − cs

2

vφ ≈ 1−H 2

2R2

⎝ ⎜

⎠ ⎟vK

National Aeronautics and Space Administration

Radial Drift

Hot, Dense

Cold, Less

Dense

Grain v=vK

National Aeronautics and Space Administration

Weidenschilling &

Cuzzi 1993

1 AU in MMSN

National Aeronautics and Space Administration

Non-fractal Aggregate Growth

(Hit-and-Stick)

Cratering/Fragmentatio

n

Non-fractal Aggregate Sticking + Compaction

Cratering/Fragmen-tation/Accretion

Non

-fra

cta

l A

gg

reg

ate

S

tickin

g +

Com

pacti

on

Frac

tal A

ggre

gate

Growth

(Hit-

and-

Stick)

Restructuring/Compaction

Frag

men

tatio

n

»0

«0

EXPERI

MENTS

Bounc

ing

Non

-fra

cta

l A

gg

reg

ate

G

row

th(H

it-a

nd

-Sti

ck)

Cra

teri

ng

/Fra

gm

en

-ta

tion

/Accre

tion

Cra

teri

ng

/Fra

gm

en

tati

on

Erosion

Ero

sio

n

A

COMPILATION

Fro

m J

. B

lum

National Aeronautics and Space Administration

Diameter

Dia

mete

r

1 µm

100 m

100 µm

1 cm

1 m

1 µm 100 m100 µm 1 cm 1 m

Non-fractal Aggregate Growth

(Hit-and-Stick)

Erosion

Non

-fra

cta

l A

gg

reg

ate

S

tickin

g +

Com

pacti

on

Cra

teri

ng

/Fra

gm

en

-ta

tion

/Accre

tion

Cratering/Fragmentatio

n

Frac

tal A

ggre

gate

Growth

(Hit-

and-

Stick)

Restructuring/Compaction

Bounc

ing

Frag

men

tatio

n

»0

«0

Ero

sio

nN

on

-fra

cta

l A

gg

reg

ate

G

row

th(H

it-a

nd

-Sti

ck)

Non-fractal Aggregate Sticking + Compaction

Cratering/Fragmen-tation/Accretion

Cra

teri

ng

/Fra

gm

en

tati

on Mass

loss

Mass conservation

Mass gain

**

**

* for compact

targets only

Blum & Wurm 2008

National Aeronautics and Space Administration

Barranco 2008

Stirring by Kelvin-Helmholtz Instability

National Aeronautics and Space Administration

Stirring by Magneto-Rotational Turbulence

Turner et al. 2006

National Aeronautics and Space Administration

Sti

rrin

g b

y 2-

Str

eam

Inst

abili

ty

Johansen et al. 2007

National Aeronautics and Space Administration

The Life of Protostellar Disks

1. Jets and Winds2. Basic disk properties3. Angular momentum transport4. Evolution of the solids

National Aeronautics and Space Administration