Production of 100 mt distilled monoglyceride (dmg)

Post on 16-Apr-2017

266 views 5 download

Transcript of Production of 100 mt distilled monoglyceride (dmg)

SAJJAD KHUDHUR ABBASCeo , Founder & Head of SHacademyChemical Engineering , Al-Muthanna University, IraqOil & Gas Safety and Health Professional – OSHACADEMYTrainer of Trainers (TOT) - Canadian Center of Human Development

Episode 75 :PRODUCTION OF 100MT DISTILLED MONOGLYCERIDE

(DMG)

PROCESS BACKGROUND

Formed biochemically via release of a fatty acid from diacylglycerol

by diacylglycerol

lipase.

Monoglyceride (MG) - chemical compound a.k.a

monoacylglycerol

Industrial chemical and

biological processes.

General Information

Act as emulsifiers - mix ingredients that

would not otherwise blend

well

PROCESS DESCRIPTION

Monoglyceride synthesis

• Glycerolysis procedure is more economical - fats are cheaper and less glycerol is required.

• Fats and fatty acids are insoluble in glycerol - high temperatures are required to force the reaction to proceed.

• On production scale, direct esterification and interesterification can be done continuously or batchwise.

Flow chart

Physical and Chemical Properties

COMPONENTS Appearance Formula MW(g/mol)

Tb(K)

Tf(K)

ΔfHo298

(kJ/mol)

GLYCEROL

- Clear viscous liquid

- Little or no odor

C3H5(OH)3 92.0900 444 472 -669.60

MONOGLYCERIDES(MONOSTEARIN)

- Colorless- Odorless- Sweet-taste- Flaky

powderC21H4204 358.5558 940.09 424.9 -1031.31

DIGLYCERIDES(DISTEARIN)

- White to pale yellow

- Wax-like solid

- Mild fatty odour

C39H76O5 625.0177 1336.04 454.8 -1495.40

LEVEL 1 SELECTION OF

PROCESSING MODE

Proposed Process Batch Continuous

• Operating 24 hr/day

• Production is continuous

• Total batch time 3-5 hours

• 7 batches/day production

• Operating 24 hr/day

• Production is continuous

• 99% purity • 40 - 60% purity • 98% purity

• Annual cost is higher • Annual cost is lower • Annual cost is higher

• Lower maintenance cost

• Higher specific manufacturing and operating cost

• Higher maintenance cost

LEVEL 2 SELECTION OF INPUT-OUTPUT STRUCTURE

𝐶3𝐻5ሺ𝑂𝐻ሻ3 + 𝑅𝑂𝐶𝑂𝐻 → 𝐶3𝐻5ሺ𝑂𝐻ሻ2𝑂𝐶𝑂𝑅+ 𝐻2𝑂 𝐶3𝐻5ሺ𝑂𝐻ሻ2𝑂𝐶𝑂𝑅+ 𝑅𝑂𝐶𝑂𝐻→ 𝐶3𝐻5𝑂𝐻ሺ𝑂𝐶𝑂𝑅ሻ2 + 𝐻2𝑂

Reaction 1

Reaction 2

Rate constant 350oF 460oF

k1 0.291 1.566

k2 0.163 0.220

Reaction Information

Input-Output Structure

Glycerol Selectivityr1=k1CGCFA(1)r2=k2CMCFA(2)

Base on consecutive reaction• Glycerol

(3)• Fatty acid

(4)• Monoglyceride(5)• Water(6)• Diglyceride(7)

(8)

(9)

(10)

(11) (12) (13)

• By applying chain rule;(14)

(15)

(16)

(17) (18)

Economic Potential of Level 2

LEVEL 3: REACTOR AND RECYCLE STREAMS

Generally, there will be input for the process and output from the process. Here we can define what are the related variables or input-output that present in this process.

Feed stream: In this process, the feed raw material is assumed already pure, so no need to purify the feed streams.

Excess reactant: fatty acid is fed as an excess reactant and is supplied in liquid form.

Recycle and purge: There are recycle stream from glycerol and fatty acid but there are no purges from the process.

Recycle Stream

(30)

G

AMFA X

XPF

(31)

GM

MW XS

PP

(32)

GGM

MG X

XSPR 1

(33)

AG

ME X

XPF 1

(34)

M

MFG S

PF

Adiabatic Temperature

n jj1

N

Hrjm Picpi

i1

M

Ta Tm 0

Energy balances

Simplified;

Where;

• Where from the process,

XG Ta(K)

0.125.04766

0.226.71848

0.330.5613

0.438.46259

0.553.72134

0.682.52075

0.7136.2711

0.8230.746

0.9367.7698

1504.2849

• Isothermal heat load can be obtained from

Determination of Reactors Volumes Cost • Operation conditions:

• Reactor Temperature = 255°C• Pressure, PT = 1.063 bar• R = 8.3144 kJ.K/kmole

𝐶3𝐻5ሺ𝑂𝐻ሻ3 + 𝑅𝑂𝐶𝑂𝐻 → 𝐶3𝐻5ሺ𝑂𝐻ሻ2𝑂𝐶𝑂𝑅+ 𝐻2𝑂 molkJH or /2.1171

𝐶3𝐻5ሺ𝑂𝐻ሻ2𝑂𝐶𝑂𝑅+ 𝑅𝑂𝐶𝑂𝐻→ 𝐶3𝐻5𝑂𝐻ሺ𝑂𝐶𝑂𝑅ሻ2 + 𝐻2𝑂 molkJH or /77.212

For CSTR;

21 rrXFV GG

MGM

M

GM

M

GG

SXS

PXS

PXF

V

1

M

G

PXF

V2G

• The annual reactor cost;

LEVEL 4SYNTHESIS OF CHEMICAL

SEPARATION SYSTEM

Distillation Column

Sizing Distillation Column

• Determination of Minimum Number of Stages

• Minimum and Actual Reflux Ratio

𝑁𝑚𝑖𝑛=

𝑙𝑜𝑔 [( 𝑑𝐿𝐾

𝑑𝐻𝐾 )(𝑏𝐻𝐾

𝑏𝐿𝐾 )]𝑙𝑜𝑔𝛼𝑚

𝑅𝑚𝑖𝑛=

𝑙𝑜𝑔 [ 𝑥𝐿𝐻𝑑

𝑑𝑋𝐻𝐾𝑑−𝛼𝐿𝐾 ,𝐻𝐾 (

𝑋 𝐻𝐾𝑑

𝑋𝐿𝐾)]

𝛼𝐿𝐾 ,𝐻𝐾−1

• Theoretical and Actual Number of Stages– The theoretical number of stages, N is calculated by using Gilliland

correlation:

• Calculated column diameter D = 4.9388 m• Column Height = 17.0688 m

𝑵−𝑵𝑴𝑰𝑵

𝑵+𝟏 =𝟏−𝒆𝒙𝒑 [( 𝟏+𝟓𝟒 .𝟒 𝒙𝟏+𝟏𝟏𝟕 .𝟐 𝒙 )( 𝒙−𝟏

√𝒙 )]

Calculation for Distillation Column

Component Feed Distillate Bottom

Molar flow Mol fraction Molar flow Mol fraction Molar flow Mol fraction

Distearin 13.8064 0.1648 0.0166 0.0009 13.7898 0.2092

Glycerin 20.1735 0.2408 17.8092 0.9973 2.3643 0.0359

Monostearin 36.1002 0.4309 0.0051 0.0003 36.0952 0.5476

Fatty Acid 13.6934 0.1635 0.0260 0.0015 13.6674 0.2073

Total 83.7736 1.0000 17.8568 1.0000 65.9167 1.0000

Fenske ( Nmin)

Parameter/Component Glycerol (LK) Monostearin (HK)

Distillate Flow Rate, di 17.81 0.01

Bottom Flow Rate,bi 2.36 36.10

(αlk,hk)N 3.190282151

(αlk,hk)1 1.979918231

Nmin 14

Gilliland correlationCalculated column diameter D = 4.9388 m

Column Height = 17.0688 mRmin 1.75

Reflux Ratio, R 2.1

X 0.1129

Y 0.48275

N 28

Cost of Distillation Column

• Where;A = capacity or size parameter of the equipmentK1, K2, K3 = values used in the correlation

𝑙𝑜𝑔10𝐶𝑝𝑜=𝐾 1+𝐾 2𝑙𝑜𝑔10 ( 𝐴)+𝐾3 [𝑙𝑜𝑔10 ( 𝐴 )]2

EP4 = EP3 - (distillation column)

LEVEL 5 HEAT INTEGRATION

Heat Exchanger Network

Stream Type Tsupply (K)Ttarget

(K)

Total Heat Capacity

Flowrate, FCp (KW/K)

Enthalpy Change, ∆H (KW)

H1 Hot 498.15 373.15 8.76 -1094.50

H2 Hot 498.15 328.15 2.37 -402.86

C1 Cold 298.15 328.15 0.834 25.011

C2 Cold 328.15 393.15 5.494 357.124

Total Q available = 2898.458 KW Total Q that must be absorbed = 2898.458 KW

Temperature Intervals

Stream Type Tsupply(K) Ttarget(K) TsS TsT ∆T ∆H FCp (KW/K)

H1 Hot 498.15 373.15 493.15 368.15 -125 -1094.495 8.756

H2 Hot 498.15 328.15 493.15 323.15 -170 -402.863 2.370

C1 Cold 298.15 328.15 298.15 328.15 30 25.011 0.834

C2 Cold 328.15 393.15 328.15 393.15 65 357.124 5.494

Shifted temperature for the hot and cold stream in Pinch Technology

Temperature Intervals

Temperature (K)

Enthalpy, ∆H (KW)

493.15

393.15 563.15

368.15 140.79Hot Cold

328.15 Utility -158.33 Utility

323.15 7.68

298.15 -20.84

Supply = 179.17Reject = 711.62Difference = -532.45

Heat transfer to and from utilities for each temperature interval

CHAPTER 3SIMULATION

CHAPTER 4MATERIAL AND ENERGY

BALANCE

Streams Manual Calculation(kg/hr)

Simulation(kg/hr)

Error Percentage(%)

1 21487.9794 21487.9790 0.00

2 21487.9794 21487.979 0.00

3 25862.1917 25918.1794 0.22

4 25862.1917 25918.1794 0.22

5 25862.1917 25918.1794 0.22

6 25862.1917 25918.1794 0.22

7 25862.1917 25918.1794 0.22

8 25862.1917 25918.1794 0.22

9 1583.3995 1657.9077 4.71

10 1583.3995 1657.9077 4.71

11 15.834 17.8594 12.79

12 1567.5655 1640.0483 4.62

Streams Manual Calculation(kg/hr)

Simulation (kg/hr)

Error Percentage (%)

13 2806.6468 2790.4650 0.58

14 4374.2123 4430.5131 1.29

15 4374.2123 4430.5131 1.29

16 24278.7922 24260.2717 0.08

17 12882.6244 12938.7256 0.44

18 11396.1678 11321.5461 0.65

19 11396.1678 11321.5461 0.65

20 12882.6244 12938.7256 0.44

21 12882.6244 12938.7256 0.44

22 630.4375 630.035 0.06

23 886.8017 756.042 14.75

24 12626.2602 12812.7186 1.48

THANK YOU

Thanks for Watching Please follow me / SAJJAD KHUDHUR ABBAS