Positive Feedback and Bistability

Post on 23-Feb-2016

85 views 0 download

Tags:

description

Positive Feedback and Bistability. BIOE 423: 2013. Stable state. Transient state. Stable state. Simulation of biochemical network. Stable steady state. Multiple stable states. Different starting points lead to different steady states. Positive Feedback. v1 = ? v2 = ? dS/dt = ?. v2. - PowerPoint PPT Presentation

Transcript of Positive Feedback and Bistability

Positive Feedback and Bistability

BIOE 423: 2013

Stable state

0 2 4 6 8 10

1.0

1.5

2.0

t

[s]

Simulation of biochemical network

Stable steady state

Transient state Stable state

0 10 20 30 40

0.5

1.0

1.5

2.0

2.5

3.0

t

[s]

Multiple stable states

0 10 20 30 40 50

68

1012

t

[s]

0 10 20 30 40 50

68

1012

t

[s]

Different starting points lead to different steady states

Positive Feedback

v1 = ?

v2 = ?

dS/dt = ?v1

v2

Positive Feedback

p = defn cell $Xo -> S1; 0.5 + Vmax*S1^n/(15 + S1^n); S1 -> $X1; k1*S1;end;p.Xo = 1;p.X1 = 0;p.S1 = 1;p.n = 4;p.Vmax = 10;p.k1 = 2;

5

Positive Feedback

Time

S1

High State

Low State

6

Positive Feedback

S1

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

k1

v2

v1

v1 v2

Perturbations around a stable point

Positive Feedback

S1

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

k1

v2

v1

v1 v2

Perturbations around a stable point

S1

Positive Feedback

S1

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

k1

v2

v1

v1 v2

v2 > v1

Perturbations around a stable point

S1

Positive Feedback

S1

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

k1

v2

v1

v1 v2

v2 > v1

Therefore: dS1/dt is negative

Perturbations around a stable point

S1

Positive Feedback

S1

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

k1

v2

v1

v1 v2

Perturbations around a unstable point

S1

Positive Feedback

S1

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

k1

v2

v1

v1 v2

v1 > v2

Perturbations around a unstable point

S1

Positive Feedback

S1

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

k1

v2

v1

v1 v2

Therefore: dS1/dt is positive

Perturbations around a unstable point

v1 > v2 S1

Positive Feedback

S1

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

k1

v2

v1

v1 v2

Therefore: dS1/dt is positive

Perturbations around a unstable point

v1 > v2 S1

Where in nature do we find multiple steady states?

http://weirdscience.ca/2007/ www.phri.org/research/res_pidubnau.asp

Eukaryotic cell differentiation Bacterial differentiation and adaptation

Bistability of the lac operon

Where is the positive feedback?

Genetic Toggle Switch

Where is the positive feedback?

dA/dt = ?

dB/dt = ?

Gardner, T. S. Cantor, C. R. Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature (2000) 6767, pages 339-342

Synthetic toggle switch has been built using lacI and tetR repressors.

Flip-Flop (Latch)

A B

1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

1 1 ? ?

Flip-flops can be made either from NAND or NOR gates.In synthetic biology it is probably easier to constructOR like gates than AND gates.

In addition an OR based flip-flop is quiescent when both inputs are low, meaning low protein levels. Latching occurswhen one or other of the inputs is brought to a high state. 18

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

Making NOR gates is ‘relatively’ easy and requires only two operator sitesdownstream of the RNA polymerase binding site (promoter).

19

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

20

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

1

0

1

0

0

NOR

NOR1

0 0

21

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

1

0

1

0

0

NOR

NOR1

1 0

22

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

1

0

0

0

0

NOR

NOR1

1 0

23

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

1

0

0

0

0

NOR

NOR0

1 0

24

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

1

1

0

0

0

NOR

NOR0

1 0

25

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

1

1

0

0

0

NOR

NOR0

1 1

26

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

1

1

0

0

0

NOR

NOR0

1 1

0

1

0

0

0

NOR

NOR0

0 1

27

Flip-Flop0

0

1

0

0

NOR

NOR

A B NOR

1 1 0

0 1 0

1 0 0

0 0 1

1

0 0

0

0

1

1

1

NOR

NOR1

0 0

0

0

1

0

0

NOR

NOR1

0 0

Toggle A to reset P1Toggle B to set P1

28

Network structures involving toggle switches

Developmental Switch

Bifurcation Diagram

h

Steady state value of A

Stable Unstable

Stable

Stable

Bistability with Hysteresis

One of the parameters in the model

Unstable state

Stable state

Stable state

Gianluca M. Guidi, and Albert Goldbeter. Bistability without Histeresis in Chemical Reaction Systems: A Theoretical Analysis of Irreversible Transitions between Multiple Steady States. Journal of Physical Chemistry (1997), 101 (49).

State Variable

Bistability with Irreversibility

Gianluca M. Guidi, and Albert Goldbeter. Bistability without Histeresis in Chemical Reaction Systems: A Theoretical Analysis of Irreversible Transitions between Multiple Steady States. Journal of Physical Chemistry (1997), 101 (49).