Phase space representation of density...

Post on 08-Aug-2020

0 views 0 download

Transcript of Phase space representation of density...

Phase space representation of density operator: the coherent state and squeezed state Masatsugu Sei Suzuki

Department of Physics, SUNY at Binghamton (Date: January 21, 2017)

Here we discuss the phase space representation of the density operator, including Wigner function for the coherent state and squeezed state in quantum optics. The density operator of a given system includes classical as well as quantum mechanical properties. __________________________________________________________________ 1. P function representation for the Density operator

We start with a density operator defined by

)(ˆ 2 Pd

where )(P is called the Glauber-Sudarshan P function (representation) and is an coherent

state. We note that

1

)(

)(

][)(

)(]ˆ[

2

2

2

2

Pd

Pd

TrPd

PdTrTr

or

1

)(

)exp()exp()(1

]))Re[2exp()exp()(1

)exp()(1

)(1

)(1

)(]ˆ[

2

222

*2222

**2222

222

22

2

Pd

Pd

dPd

dPd

dPd

dPd

PdTrTr

where

11 2

d (formula)

]}Re[2exp{ *222

Note that and are complex numbers,

iyx , iba

Since

byax

iyxiba

)])(Re[(]Re[ *

we get the integral as

)exp(

)exp(

)2exp()2exp(]))Re[2exp(

2

22

22*22

ba

byydydxaxxdxd

We also note that the density operator can be rewritten as

ˆ1

ˆ1

ˆ

222

222

dd

dd

using the formula

11 2

d

((Example)) The average number of photons can be written as

22

2

2

)(

ˆˆ)(

]ˆˆ)([

]ˆˆˆ[

ˆˆˆ

Pd

aaPd

aaPdTr

aaTr

aan

So )(P is normalized as a classical probability distribution.

((Note)) Here we note that

]exp[)(

)(

)(ˆ

22

22

2

Pd

Pd

Pd

since

]exp[]}Re[2exp{2*222

Since ]exp[2 is not a delta function, the diagonal elements

)(ˆ P

Although ˆ must be positive. However, the integral ]exp[)(22 Pd does not

require to be positive. 2. Two-dimensional Dirac delta function of the complex variable

Two-dimensional Dirac delta function of the complex variable, "' i .

)exp(1

)exp(1

)]"'(exp[)2(

1

)"()'()(

**22

**22

2

)2(

d

d

yxidydx

or

)exp(1

)( **22

)2(

d

where

)"'()Im(2 *** yxii

and

)(2

1

22ixy

xi

y

We also note that the 2D Dirac delta function is given by

])()exp[(1

)( ***22

)2(

d

3. Expression of )(P

How can we find the expression of )(P ? We consider the density operator which is defined

by

)(ˆ 2 Pd

Using the formula for the scalar product for the coherent states,

]2

1

2

1exp[ *22

we get the matrix element of the density operator as

]exp[]exp[)(]exp[

)(ˆ

**222

2

uuPdu

uuPduu

or

]exp[]exp[)(ˆ]exp[ **222uuPduuu

Here we use the 2D Dirac delta function.

]exp[)(

)(]exp[)(

])()exp[(]exp[)(

]exp[]exp[]exp[)( ]exp[ˆ]exp[

22

222

**222

****222**22

P

Pd

uuudPd

uuuuudPduuuuuud

or

udeuueeP uuu 2)(2

**22

ˆ1

)(

4. Another expression of )(P ))

The expression of )(P can be also obtained as follows.

**

*

*

*

)(

)(

])( [

]ˆ[

2

ˆˆ2

ˆˆ2

ˆˆˆˆ

ePd

eePd

eePdTr

eeTree

aa

aa

aaaa

Here we use the expression of the 2D Dirac function as

])()exp[(1

)( ***22

)2(

d

Thus we get

)(

)()(

1)(

))()( (11

)2(2

)()(22

2

222

ˆˆ22

***

*******

P

Pd

edPd

eePddeeed aa

or

]ˆ[1

1)(

)ˆ()ˆ(22

ˆˆ22

**

***

aa

aa

eeTrd

eeedP

Here we note that Tr under the integral is characteristic function of the normally ordered a , a operators,

]ˆ[)( ˆˆˆˆ ** aaaaN eeTree

Therefore we have

**

***

)( 1

1)(

22

ˆˆ22

ed

eeedP

N

aa

This relation represents a mapping from the density operator , which is a function of the two

operators a and a , to the scalar function )(N , which is function of the complex variables .

)(P is the Fourier transform of the normally ordered characteristic function. 5. P function for the coherent state (I)

We consider the density operator for the pure coherent state ;

ˆ .

We note that

)exp(

]2

1

2

1exp[]

2

1

2

1exp[

ˆ

**22

*22*22

uuu

uuuu

uuuu

where

]2

1

2

1exp[ *22

uuu

]2

1

2

1exp[ *22 uuu

Then we get

)(

)(

1

1

1

ˆ1

)(

)2(

)2(

2)()((2

2)()(2

2)()(

2

2)(2

22

***22

****22

****2222

**22

e

udee

udeee

udeeee

udeuueeP

uu

uuuu

uuuuuu

uuu

or

)()( )2( P for the density operator (pure state ˆ ).

6. P function for the coherent state (II)

We consider the density operator for the pure coherent state ;

ˆ .

Thus we get

**

*

*

*

ˆˆ

ˆˆ

ˆˆ

][

]ˆ[)(

e

ee

eeTr

eeTr

aa

aa

aaN

**

***

)( 1

1)(

22

ˆˆ22

ed

eeedP

N

aa

)(

1

1)(

)2(

)()(22

22

***

****

ed

eedP

7. P function for the number state n (I)

We consider the density operator for the pure coherent state n ;

nn .

We note that

!

)(ˆ

*2

n

uueunnuuu

nu

Thus we get

udeuun

e

uden

uueee

udeuueeP

uun

uun

uu

uuu

2)(*2

2)(*

2

2)(2

**

2

**222

**22

)(1

!

!

)(1

ˆ1

)(

Formally, we can write

)(!

1

!)(

*

2

2)(2*

2

2

**

2

nn

n

uun

n

n

e

uden

eP

8. P function for the number state n (II)

We consider the density operator for the pure number state n ;

nn .

Thus we get

neen

eennTr

eeTr

aa

aa

aaN

ˆˆ

ˆˆ

ˆˆ

*

*

*

][

]ˆ[)(

2

)2(2

)()(22

2

ˆˆ23

ˆˆ22

22

1

)(1

11

1

1

)( 1

)(

***

***

***

**

n

nnd

ednnd

eneend

eneend

edP

aa

aa

N

or

2

!

1)(

22

en

nPn

which is a Poisson function. where

neenne aa ** ˆ*ˆ

nene a ** ˆ

9. Q-representation

There are other orderings possible for the two operators a and a . This time we use the antisymmetric ordering and define the antinormally ordered characteristic function

]ˆ[)( ˆˆ* aaA eeTr

Its Fourier transform is called Q representation. This representation is sometimes called the Husimi function.

**

)( 1

)( 22

edQ A

and has a simple form

0ˆ1

)(

Q

Thus )(Q is the probability of finding a system in the density operator in the coherent state

. This proof is given below.

aa

aaA

eeTrd

eeTr

ˆˆ2

ˆˆ

*

*

ˆ[ 1

]ˆ[)(

ˆ1

)(ˆ[ 1

1

]ˆ[ 1

]ˆ[ 1

1

]ˆ[ 1

1

)(

)2(2

)()(22

2

ˆ222

ˆˆ222

***

****

***

d

edTrd

eeTrded

eeTrdedQ

a

aa

((Husimi function)) Kôdi Husimi (June 29, 1909 – May 8, 2008, Japanese:) was a Japanese theoretical physicist who served as the president of the Science Council of Japan. Husimi trees in graph theory, and the Husimi Q representation in quantum mechanics, are named after him. https://en.wikipedia.org/wiki/K%C3%B4di_Husimi

Fig. Photo of Prof. Dodi Husimi.

http://www.47news.jp/PN/200805/PN2008050901000355.-.-.CI0003.jpg 10. Q representation for a pure coherent state

For the density operator

ˆ

we have

]exp[11

)( **222

Q

since

]2

1

2

1exp[ *22

11. Q representation for the pure number state

For the density operator

nn

we have

)exp(!

1)(

22

2

n

nQn

which is the Poisson function 12. Wigner representation

For symmetric order of two operators a and a . The characteristic function is defined as

)(ˆ)](ˆˆ[)]ˆˆexp(ˆ[)( * DDTraaTrS

Its Fourier transform is called Wigner representation.

)](ˆˆ[ 1

)( 1

)(

**

**

22

22

DTred

edW S

13. Another expression of Wigner function

)ˆˆ(2

1)ˆˆ(

2

1

2ˆ aaaaxX

,

)ˆˆ(2

1)ˆˆ(

22

2

1ˆ 0 aai

aai

mpY

or

YiXa ˆˆˆ , YiXa ˆˆˆ . Note that

12

1]ˆ,ˆ[

2

1]ˆ,ˆ[

2

1

2]ˆ

2

1,ˆ

2[]ˆ,ˆ[ ipxpxpxYX

,

)ˆ'2exp()ˆ"2exp()"'exp(

]ˆ'2ˆ"2exp[

]ˆ)(ˆ)exp[(

)]ˆˆ()ˆˆ(exp[

)ˆˆexp()(ˆ

**

*

*

YiXii

YiXi

YiX

YiXYiX

aaD

This operator can be rewritten as

)ˆ'2

exp()ˆ"2exp()"'exp(

)ˆ2

1'2exp()ˆ

2"2exp()"'exp()(ˆ

pixii

pixiiD

Then we get

'2')'"2exp()"'exp(

'2')

'2'("2exp()"'exp(

'2')ˆ"2exp()"'exp(

')ˆ'2

exp()ˆ"2exp()"'exp(')(ˆ

xxii

xxii

xxii

xp

ixiixD

Wigner function

'2'ˆ')'"2"'exp('

1

')(ˆˆ'' 1

)](ˆˆ[ 1

)( 1

)(

**

**

**

**

22

22

22

22

xxxiidxed

xDxdxed

DTred

edW S

Note that

'"2"'2** ii

")'2''2("'2

'"2"''"2"'2'"2"'**

xii

xiiiixii

We use the Dirac delta function as

)'2''2(2 ]")'2''2(exp["d xxi

Then we have

)''22

ˆ')]'2

'("4exp['2

)'2'2(2

'ˆ')]'2'2("2exp['2

'2'ˆ')'2''2()"'2exp(''

2)(

xxxidx

xxxxidx

xxxiddxW

Here we define

2'

uxx ,

2''

22 uxx

x'2

, p"2

dudx2

1'

pu

u

xu

x

x

xx

2

"2

2

)2

("2

4

)'2

'("2

4

)'2

'("4)'2

'("4

2

1),()( 2 u

xu

xedupxWW ipu

which is the Fourier transform of non-diagonal density matrix element in the position eigenstates basis. Using the inverse Fourier transform, the non-diagonal matrix element of the demsity operator is

),( 2

ˆ2

2 pxWedpu

xu

x ipu

13. Displacement operator

With help of the 2D Dirac delta function, we introduce a new notation for the quantum states in phase space,

)(ˆ)exp(1

)ˆˆexp()exp(1

])ˆ()ˆexp[(1

)ˆ(

**22

***22

**22

)2(

Dd

aad

aada

where )(ˆ D is the displacement operator,

)ˆexp()ˆexp()2

1exp(

)ˆexp()ˆexp()2

1exp(

)ˆˆexp()(ˆ

*2

*2

*

aa

aa

aaD

We note that

)(

)](ˆˆ[)exp(1

)]ˆ(ˆ[)ˆ(

**22

)2()2(

W

DTrd

aTra

15. Wigner representation for a pure coherent state

For ˆ

)exp()2

1exp(

)(ˆ

)](ˆ[

)(ˆ)](ˆˆ[

**2

D

DTr

DDTr

where

)exp()2

1exp(

)ˆexp()ˆexp()2

1exp()(ˆ

**2

*2

aaD

Thus we get the Wigner representation

]})()[(2exp{2

]2exp[2

)]()(exp[)2

1exp(

1

)exp()2

1exp()exp(

1

)](ˆˆ[)exp(1

)(

20

20

2

***22

2

**2**22

**22

yyxx

d

d

DTrdW

or

]})()[(2exp{2

)( 20

20 yyxxW

We use '' iyx , ''2 dydxd , )( 00 yyixx (x, y, p, p0, q and q0 are real). Using

the Mathematica, we get

)])(2)(2exp[2

]')(2')(2)''(2

1exp['')]()(exp[)

2

1exp(

20

20

0022***22

yyxx

yxxixyyiyxdydxd

16. Wigner representation for a pure squeezed state

For ˆ

0ˆ)(ˆˆ0

)(ˆ

)](ˆ[

)(ˆ)](ˆˆ[

SDS

D

DTr

DDTr

Then the Wigner function is obtained as

0ˆ)(ˆˆ0)exp(1

)](ˆˆ[)exp(1

)(

**22

**22

SDSd

DTrdW

where

)ˆˆexp()(ˆ *aaD

We use the Bogoliubov transformation

aabSaS ˆˆˆˆˆˆ , aabSaS ˆˆˆˆˆˆ **

where

])ˆ(2

2

1exp[ˆ 22* aaS ,

SaaS ˆ])ˆ(2

2

1exp[ˆ 2*2

122 , ise

scosh , sei sinh

00ˆ b

Thus we have

aa

aaaa

bbSaaS

ˆ)(ˆ)(

)ˆˆ()ˆˆ(

ˆˆˆ)ˆˆ(ˆ

****

***

**

Here we switch the variable as , leading to the change of parameters ( and

SS ˆˆ ).

aaSaaS ˆ)(ˆ)(ˆ)ˆˆ(ˆ *****

or

aa

aaSaaS

ˆˆ

ˆ)(ˆ)(ˆ)ˆˆ(ˆ

*11

*****

where **1

By using the relation 1ˆˆ SS we get

2*11

**2*

)ˆˆ(

ˆ)ˆˆ(ˆˆ)ˆˆ(ˆˆ)ˆˆ(ˆ

aa

SaaSSaaSSaaS

which leads to the relation

)(ˆ)(ˆˆ)(ˆˆ **1 DDSDS

Using the relation

)2

1exp(

0)ˆexp()ˆexp(0)2

1exp(

0)ˆexp()ˆexp()2

1exp(00)(ˆ0

2

1

*11

2

1

*11

2

11

aa

aaD

we get

)2

1exp(

1

)2

1exp()exp(

1

)2

1exp()exp(

1

0)(ˆ0)exp(1

)(

2****22

2****22

2

1**2

2

1**2

2

d

d

d

DdW

where 122 . This integral can be calculated by using the Mathematica with

''2 dydxd and '' iyx .

)2exp[2

)(2**

W

When iyx

)],(2exp{2

),( yxFyxW

where

)]2sinh(]sin2cos))([()2cosh()(),( 22 sxyyxyxsyxyxF

When 0

ss eyex

syxyxsyxyxF2222

22 )]2sinh()])(()2cosh()(),(

((Note))

yexe

yexe

y

x

e

e

y

x

ss

ss

s

s

2cos

2sin

2sin

2cos

2cos

2sin

2sin

2cos

0

0

'

'

under the rotation and squeezed processes. Thus we have

xys

yssxssyx

sin)2sinh(2

]cos)2sinh()2[cosh(]cos)2sinh()2[cosh('' 2222

17. Wigner representation for a pure squeezed coherent state

For )(ˆˆ00ˆ)(ˆ,,ˆ DSSD

0ˆ)(ˆ)(ˆ)(ˆˆ0

,)(ˆ,

)](ˆ,,[

)(ˆ)](ˆˆ[

SDDDS

D

DTr

DDTr

Then the Wigner function is obtained as

0ˆ)(ˆ)(ˆ)(ˆˆ0)exp(1

)](ˆˆ[)exp(1

)(

**22

**22

SDDDSd

DTrdW

where

)ˆˆexp()(ˆ *aaD

Using the formula

DDD ˆ)2

exp(ˆˆ**

We calculate

D

D

DDDDD

ˆ)exp(

ˆ)2

exp()2

exp(

ˆˆ)2

exp(ˆˆˆ

**

****

**

0ˆ)(ˆˆ0)]()(exp[1

)( ***22

SDSdW

where

)(ˆ)(ˆˆ)(ˆˆ **1 DDSDS

with

**1

Using the relation

)2

1exp(

0)ˆexp()ˆexp(0)2

1exp(

0)ˆexp()ˆexp()2

1exp(00)(ˆ0

2

1

*11

2

1

*11

2

11

aa

aaD

Thus we have

]2

1)()(exp[

1)(

2*****22

dW

or

))()(2exp[2

)(2**

W

When iyx and 00 iyx

)],(2exp{2

),( yxFyxW

where

)]2sinh(]sin2cos))([()2cosh()(),( 2200 syxyxyxsyxyyyxxxF

18. Wigner function for the pure number state

We have the Wigner function for the density operator nn as

nDnd

DnnTrd

DTrd

aTrW

)(ˆ)exp(1

)](ˆ[)exp(1

)](ˆˆ[)exp(1

)]ˆ(ˆ[)(

**22

**22

**22

)2(

Here we note that

)()2

1exp(

!

)()

2

1exp(

)ˆ)ˆ()!(

)()

2

1exp(

)ˆexp()ˆexp()2

1exp()(ˆ

22

0

22

02

22

*2

n

n

m

m

n

m

mmm

L

m

n

m

naanm

naannDn

where )(xLn is a Laguerre polynomial. Thus we have

)4()2exp()1(2

)()2

1exp()exp(

1)(

22

22**22

nn

n

L

LdW

where

222yx

n

k

k

n k

n

k

xxL

0 !

)()(

19. Relations between the Wigner, Q and P representations (a) Relation between W and P

Using the expression for

)(ˆ 2 Pd

we have

]2exp[)(2

])]()(exp[)2

1(e

1)(

])(ˆ 1

)(

)](ˆ[ 1

)()(

22

***222

2

22

2

22

2

**

**

Pd

xpdPd

DedPd

DTredPdW

where

)exp()2

1exp(

)ˆexp()ˆexp()2

1exp()(ˆ

**2

*2

aaD

(b) Relation between Q and P

]exp[)( 1

)(1

ˆ1

)(

22

22

Pd

Pd

Q

where

)2

exp( *

22

]exp[

])(exp[

)*2

exp()2

exp(

2

**22

22

*

222

(c) Fourier transform

)exp()exp()( 1

)exp(

)exp()exp()( 1

]exp[)( 1

)(

**222

**222

22

Pd

Pd

PdQ

or

)exp()exp()( 1

)()exp( **222

PdQ

Thus )()exp(2 Q is the Fourier transform of the function )exp()(

2 P . On taking the

Inverse Fourier transform, we have

)exp()()exp( 1

)exp()( **222

QdP

or

)exp()]()exp([ )exp(1

)( **222

QdP

20. Example of Wigner representation for the density operator with a pure number

state.

Wigner function for the pure number state n (n = 1, 2, 3, …).

)4()2exp()1(2

)(22

n

n LW

where 222yx , ),()( yxWW n

Fig. Wigner function for the density operator with the pure state n (n = 0, 1, 2, 3, 4).

21. Example of Wigner representation for the density operator with a coherent state

The Wigner function for the density operator with a coherent state is given by

]})()[(2exp{2

)( 20

20 yyxxW

,

where iyx and 00 iyx .

Fig. Plot of ),( yxW with the density operator (a pure coherent state) with a fixed point

),( 00 yx .

Fig. Plot of ),( yxW with cos0 rx and sin0 ry , where n3

(n = 0, 1, 2, 3, 4, 5).

22. Example of Wigner representation for the density operator with a squeezed

coherent state The wigner function for the density operator with a squeezed coherent state is given by

))()(2exp[2

)(2**

W

where iyx and 00 iyx .

)],(2exp{2

),( 00 yxFyyyxxxW

where

)]2sinh(]sin2cos)[()2cosh()(),( 222200 syxyxsyxyyyxxxF

where )cosh(s and )sinh(sei .

Fig. Plot of ),( yxW for the density operator (a pure squeezed coherent state) with fixed

values of s and . REFERENCES M. Suda, Quantum Interferometry in Phase Space, Theory and Applications (Springer, 2006). C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge, 2006) W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, 2001). Z. Ficek and M.R. Wahiddin (Pan Stanford Publishing, 2014). U. Leonhardt, Essential Quantum Optics (Cambridge, 2010). S. Haroche and J.M. Raimond, Exploring the Quantum Atoms, Cavities, and Photons (Oxford,

2006). ______________________________________________________________________________ APPENDIX I Formula

The formula which are used in this chapter are listed below. (a)

11 2

d

(b)

]2

1

2

1exp[

)](2

1exp[

2

1exp[

*22

**2

(c)

)2exp(2)2

1exp()exp(

22**2 d

APPENDIX II 2D Dirac delta function

)exp(1

)( **22

)2(

d

)(ˆ)exp(1

)ˆ( **22

)2(

Dda

where )(ˆ D is the displacement operator.

APPENDIX III 2D Fourier Transform

The 2D Fourier transform is defined as

**

)( 1

)( 2 efdF (Fourier Transform)

The Inverse Fourier transform is given by

)(2 **

)( 1

)(

eFdf (Inverse Fourier transform)

((Proof))

)(

)()(

)( 1

)( 1

1

)( 1

)2(2

)()(222

2)(2)(2

***

******

f

fd

edfd

efdedeFd

APPENDIX IV Formula related to displacement operator

D is called the displacement operator,

)ˆˆexp(ˆ *aaD .

)ˆˆexp(ˆˆ *aaDD

1ˆˆˆˆ aDaD

1ˆˆˆˆ aDaD

1ˆˆˆˆ * aDaD

1ˆˆ DD . (Unitary operator).

)ˆˆexp()2

1exp(

)2

1ˆˆexp()ˆexp()ˆexp(

*2

2**

aa

aaaa

)ˆexp()ˆexp()2

1exp()ˆˆexp(ˆ *2* aaaaD

ˆ D

ˆ a a ˆ D ˆ a a 2 ˆ 1 2 ˆ a ( ˆ a ˆ 1 )2

ˆ D

ˆ a ˆ a ˆ D ˆ a ˆ a ( *)2 ˆ 1 2 * ˆ a ( ˆ a * ˆ 1 )2

ˆ D

f ( ˆ a , ˆ a ) ˆ D f ( ˆ a ˆ 1 , ˆ a * ˆ 1 )

)ˆexp()ˆexp()2

1exp()ˆˆexp(ˆ *2* aaaaD

)ˆexp()ˆexp()2

1exp()ˆˆexp(ˆ *2* aaaaD

)ˆexp()ˆexp()ˆexp()ˆexp()2

1exp(

)ˆ)(ˆ)exp[(ˆ

**2

*

aaaa

aaD

)ˆexp()ˆexp()ˆexp()ˆexp()2

1exp()

2

1exp(ˆˆ **22

aaaaDD .

DDDD ˆˆ)exp(ˆˆ **

DDD ˆ)2

exp(ˆˆ**

)ˆˆexp()2

1exp()ˆexp()ˆexp( *** aaaa

)ˆˆexp()2

1exp(

])ˆ,ˆ[2

1exp()ˆˆexp()ˆexp()ˆexp(

**

***

aa

aaaaaa

)ˆexp()ˆexp()exp()ˆexp()ˆexp( *** aaaa .

APPENDIX V Equivalence between ])ˆˆ(

exp[

pxi and displacement operator

Using the expressions of a and a , we have

)ˆˆexp(])ˆˆ(

exp[ *aapxi

with

0 m

ˆ(2

ˆ0

m

pixa ,

ˆ(2

ˆ0

m

pixa

aam

aax ˆˆ2

ˆˆ2

0

aam

iaa

i

mp ˆˆ

2

1ˆˆ

2

1ˆ 00

The operator

)ˆˆ( pxi can be rewritten in terms of { a , a },

aa

am

m

ia

m

m

i

aam

aam

ipxi

ˆˆ

ˆ]22

[ˆ]22

[

ˆˆ2

ˆˆ2

)ˆˆ(

*

0

0

0

0

0

0

where is a complex number,

)(2

1

220

0

im

m

i

)(2

1

220

0

*

im

m

i

Thus we have

])ˆˆ(

exp[

pxi is the displacement operator,

)ˆexp()ˆexp()2

1exp()ˆˆexp(ˆ *2* aaaaD