PENGOLAHAN CITRA DIGITAL - Amikom...

Post on 28-Mar-2021

3 views 0 download

Transcript of PENGOLAHAN CITRA DIGITAL - Amikom...

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

PENGOLAHAN CITRA DIGITAL

1

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 2

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Representasi Image

1 bit 8 bits

3

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

24 bits 4

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Apakah itu histogram?

(3, 8, 5)

Histogram memberikan deskripsi global dari penampakan sebuah image.

5

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

rk adalah nilai gray level ke k nk adalah jumlah pixels dalam image

Hi s togr a m dar i levels

i ma ge di g i ta l

dengan gray dari 0 sampai L-1 d

adalah fungsi diskrit n

h(rk)=nk, i m a a :

yang memiliki gray level k n adalah jumlah keselirihan pada image k = 0, 1, 2, …, L-1

pixel

6

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Histogram dari image digital dengan gray level

[0, L-1] yang berada dalam range adalah sebuah f u n g s i d i s k r i t

h(rk) adalah nilai

= nk gray rk nk adalah dimana

jumlah level ke k dan

rk. pixel yang memiliki nilai gray level

Number of

Occurrences

0 255

Pixel Value

7

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

8

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

9

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

10

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Image colors

red green blue

11

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Sifat – Sifat Histogram

Histogram adalah pemetaan Many-to-One

Image yang berbeda dimungkinkan untuk

m e m i l i k i h i s t o g r a m y a n g s a m a .

A 1

2 4 3

Images

B

Histograms

12

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Histogram sebuah image tidak

berubah o p e r a s i

bila image dikenakan t e r t e n t u s e p e r t i :

. R o t a t i o n , s c a l i n g , f l i p

Rotate

Clockwise

Flip

Scale

13

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Ekualisasi Histogram

Adalah proses Mapping dari Grey Levels

”p” menjadi Grey Levels “q” sedemikian sehingga distribusi dari Grey Levels pada “q” mendekati bentuk Uniform

14

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Bila p(k) = image histogram pada

k = [0..1] T u j u a n : contrast sehingga

m e n c a r i stretching

t r a n s f o r m a s i

T(k) sedemikian I2 = T(I) and p2 = 1(uniform)

p2 p(k)

15

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Dengan Histogram informasi spasial dari image diabaikan

dan hanya mempertimbangkan frekuensi relatif

p e n a m p i l a n g r a y l e v e l .

16

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

untuk melihat statistika dari i m a g e .

Normalisasi Histogram

Normalized histogram: p(rk)=nk/n

Jumlah keseluruhan komponen = 1

Adalah membagi setiap nilai dari

histogram dengan jumlah pixel d a r i i m a g e ( n ) ,

p(rk) Normalisasi

= nk /n. Histogram berguna

17

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

18

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Diberikan sebuah image

8-level berukuran 64 x 64 dengan nilai gray

Nilai gray 1/7,

1).

value (0, 1, …, 7). normalisasi dari

(0, value 2/ 7,

adalah …, …, … . ,… . ,

19

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

20

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

21

Hanya ada 5 nilai gray level yang berbeda

yang berpengaruh dalam image tsb.

H a s i l e k u a l i s a s i a d a l a h p e n d e k a t a n t e r h a d a p b e n t u k h i s t o g r a m y a n g u n i f o r m

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 22

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

23

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

24

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 25

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Spatial Filtering

2D FIR filtering Mask filtering: operasi konvolusi image

2 D masking Applikasinya antara lain untuk image

enhancement: Smoothing: low pass Sharpening: high pass

dengan

Data-dependent nonlinear Local histogram Order statistic filters Medium filter

filters

26

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Spatial filtering adalah operasi

y a n g d i l a k u k a n

dari Terhadap intensitas pixel

s u a t u i m a g e

Dan bukan terhadap komponen

f r e k u e n s i d a r i i m a g e

a b

g(x, y) w(s, t) f (x s, y t) s a t b

a = (m - 1) / 2 b = (n - 1) / 2 27

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

28

Konvolusi Image

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Smoothing Spatial Filters _ averaging (lowpass) filters

Linear

Smoothing filters are used

-

-

-

Noise reduction

Smoothing of false contours

Reduction of irrelevant detail

Undesirable side effect of

- Blur edges

smoothing filters

Weighted average filter

reduces blurring in the

smoothing process.

Box

filter Weighted

average 29

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Smoothing Linear Filters

I J

w(i, j) f (m i, n j) i I j J

g(m, n) I J

w(i, j) i I j J

Normalization of coefficient to

ensure 0 ≤ g(m,n) ≤ L-1

30

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Averaging dan Threshold

filter size Thrsh = 25% of

n = 15 highest intensity

31

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Sharpening Linear Filters

High boosting filter: Laplacian operator:

2 2 f (x, y) f (x, y) 2 f (x, y) x2

f (x

y 2

f (x, y f (x 1, y) 1, y) 1) f (x, y 1) 4 f (x, y)

A ≥ 1

Derivative filter:

Use derivatives to

approximate high pass filters. Usually 2nd

derivatives are preferred. The most common one is the Laplacian operator.

32

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

3 3 Median filter [10 125 125 135 141 141 144 230 240] = 141

3 3 Max filter [10 125 125 135 141 141 144 230 240] = 240

3 3 Min filter [10 125 125 135 141 141 144 230 240] = 10

Order Statistics Filters

Order-statistics filters are nonlinear spatial filters whose

response is based on ordering (ranking) the pixels

contained in the image area encompassed

and then replacing the value of the center

by the filter,

pixel with the

value determined by the ranking result.

Median filter eliminates isolated clusters of pixels that are light or

dark with respect to their neighbors, and whose area is less than n2/2.

33

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Order Statistics Filters

n = 3

Median

filter

n = 3

Average

filter

34

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

2-D, 2nd Order Derivatives for Image Enhancement

Isotropic filters: rotation invariant

Laplacian (linear 2

operator):

2 f f 2 f x2 y2

Discrete 2 f

version:

f (x 1, y) f (x 1, y) 2 f (x, y) 2 x 2

2 f f (x, y 1) f (x, y 1) 2 f (x, y)

2 y 2

35

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Laplacian Digital implementation:

2 f [ f (x 1, y) f (x 1, y) f (x, y 1) f (x, y 1)] 4 f (x, y)

Two definitions negative of the Accordingly, to features:

of Laplacian: one is the other recover background

2 f f ( x,y ) ( x,y )( I )

g(x, y) { 2 f ( x,y ) f ( x,y )( II )

I: if the center of the mask is negative II: if the center of the mask is positive

36

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Simplification

Filter and step:

recover original part in one

g(x,y)

g(x, y)

f (x,y) [ f (x 1,y) f (x 1, y)

1,y) f (x

f (x,y 1, y)

1) f (x,y 1)] 4 f (x,y)

5 f (x, y) [ f (x f (x, y 1) f (x, y 1)]

37

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 38

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 39

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 40

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

H igh-boost Filtering

fs(x, y) f (x, y) f (x, y) Unsharp masking:

Highpass filtered image = Original – lowpass filtered image.

If A is an amplification factor then:

High-boost = A · original – lowpass (blurred) = (A-1) · original + original – lowpass = (A-1) · original + highpass

41

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

High-boost Filtering

A=1 : standard highpass result

A>1 like

: the high-boost image looks more the original with a degree of edge

enhancement, depending on the value of A.

w=9A-1, A≥1

42

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 43

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

1st Derivatives

The most common method of

differentiation in Image Processing f

is the gradient:

F Gx

Gy

x f at (x,y)

y

• The magnitude of this vector is: 1/ 2

2 2 1 f f 2 2 f mag( f ) [Gx Gy ]

2

x y

44

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

The Gradient Non-isotropic Its magnitude (often rotation invariant

call the gradient) is

Computations: f Gx Gy

Gx

Gy

(z9

(z8

z5 ) z6 )

Roberts uses:

Approximation Operators):

(Roberts Cross-Gradient

f z9 z5 z8 z6 45

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 46

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Derivative Filters

At z5, the magnitude can be approximated as:

2 2 1/ 2 f [(z5

| z5

z8 ) (z5

| z5

z6 ) ] z6 | f z8 |

47

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Derivative Filters

Another approach is:

2 2 1/ 2 f [(z5

| z5

z9 ) (z6

| z6

z8 ) ] z8 | f z9 |

• One last approach is (Sobel Operators):

f (z7 2z8 z9 ) (z1 2z2 z3) (z3 2z6 z9 ) (z1 2z4 z7)

48

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

Robert operator

Sobel operators 49

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 50

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 51

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM

(b)

52

STMIK AMIKOM PURWOKERTO

ABDUL AZIS, M.KOM 53