Overview of Next Generation Sequencing platform … 2012/0305 - Timmermann.pdf · Next Generation...

Post on 19-Mar-2018

260 views 7 download

Transcript of Overview of Next Generation Sequencing platform … 2012/0305 - Timmermann.pdf · Next Generation...

Next Generation Sequencing Core FacilityNext Generation Sequencing Core FacilityMax Planck Institute for Molecular GeneticsMax Planck Institute for Molecular GeneticsBerlin, GermanyBerlin, Germany

Dr. Bernd Timmermann

Overview of Next Generation Sequencing platform technologies 

May 23rd 2012, Budapest

1. Technologies

Illumina

Roche / 454

2. Projects and Applications

whole Genome Re-sequencing

Sequence Capture

Amplicon Sequencing

3. Outlook

Outline

May 23rd 2012, Budapest

Max Planck Society

Max Planck Institutefor molecular Genetics

80 institutes and research facilities

20,435 people

Budget 1,400 million euro in 2010

May 23rd 2012, Budapest

1980 1985 1990 1995 2000 2005 2010

1000,000,000

100,000,000

10,000,000

1,000,000

100,0000

10,000

1000

100

10

Gel-based Systems

Capillary Sequencing

Next GenerationSequencing

First GenerationCapillary Sequencer

Second GenerationCapillary Sequencer

MicrowellPyrosequencing

Short-ReadSequencer

Thro

ughp

ut p

er s

yste

m [k

iloba

ses/

day]

Year

Modified after MR Stratton et al. Nature

458, 719‐724 (2009)

Development of Sequencing Throughput

May 23rd 2012, Budapest

Development of Sequencing Technologies

• 96 sequences in parallel• 3.2 billions of sequences

per run

Human Genome Project1000 Genomes Project

May 23rd 2012, Budapest

7 x Illumina

3 x SOLiD

5 x Roche GS

Sequencing Capacities at the MPI-MG

3 x Capillary Systems

May 23rd 2012, Budapest

IT Infrastructure

Long ReadTechnologies

Short ReadTechnologies

TB

GB

25 x 32 (64) Compute Server with 128 (512 GB) RAM4 peta byte Storage Capacity

May 23rd 2012, Budapest

1. Technologies

Illumina

Roche / 454

2. Projects and Applications

whole Genome Re-sequencing

Sequence Capture

Amplicon Sequencing

3. Outlook

Technologies

May 23rd 2012, Budapest

Genome Sequencer FLX HiSeq 2000/SOLiD

• ChipSeq• MeDipSeq• miRNA• RNAseq• Sequencing of target regions• Whole genome resequencing

• de novo Sequencing • Metagenome Analyses• Amplicon Sequencing• Full length Transcriptome Analyses• Sequencing of target regions

May 23rd 2012, Budapest

Principle Illumina Sequencing

Library Preparation

Attachement of single molecules to surface

Amplification to form clusters

Cluster Generation

May 23rd 2012, Budapest

5’

G

T

C

A

G

T

C

A

G

T

C

A

GT

3’

5’

C

A

G

TC

A

T

C

A

C

C

TAG

CG

TA

First base incorporated

Cycle 1: Add sequencing reagents

Remove unincorporated bases

Detect signal

Cycle 2-n: Add sequencing reagents and repeat

Sequencing by Synthesis (SBS)

May 23rd 2012, Budapest

Referenzsequenz ....CGAGCGAATGAAGTCGGGAGTCGTAATGAGCCCGTAATCCCGTTAGTA....

CGAGCGAATGAAGTCGGGAGTCCTAATGAGCCCGTAGAGCGAATGAAGTCGGGAGTCCTAATGAGCCCGTAA

CGAATGAAGTCGGGAGTCCTAATGAGCCCGTAATCCTGAAGTCGGGAGTCCTAATGAGCCCGTAATCCCGTT

TCGGGAGTCCTAATGAGCCCGTAATCCCGTTAGTA

Sequence Reads

Conversion of image data to DNA sequences

May 23rd 2012, Budapest

Input Material:

~ 1-3 µg DNA shotgun Sequencing~ 10 ng ChipSeq Sequencing

Library Preparation:

~ 1.5 days

Cluster Generation:

~ 1 day

Run Time/

Single read ~ 2 days (36 b)Read Length:

Paired End ~ 10 days (2 x 100 b)

Data Processing:

~ 1 day

Output:

Paired End ~ 500 Gb

Reads:

up to 4800 Mio

Facts Illumina Sequencing (HiSeq 2000)

May 23rd 2012, Budapest

1. Genome is loaded into a PicoTiter™

plate

3. Load Reagentsin a single rack

4. Sequencing

2. Load PicoTiter plate into instrument

454 Sequencing Instrument

May 23rd 2012, Budapest

Principle 454 Sequencing

Library Preparation

Emulsion PCR

Depositing DNA Beads into the PicoTiter™Plate

Pyrosequencing

Emulsion Breaking

May 23rd 2012, Budapest

Input Material:

~ 0.5 µg DNA

Library Preparation :

~ 4 hours

Emulsion PCR:

~ 1 day

Run Time:

20 hours

Data Processing:

~ 10 hours

Output:

Titanium+ 700 -

1000 MB

Reads: Titanium+ 1.000.000 -

1.600.000

Read length:

700 -

800 bases

Facts 454 Sequencing

May 23rd 2012, Budapest

Sequencing Pipeline

Library Preparation

Library Quantification

Bead EnrichmentSequencing

May 23rd 2012, Budapest

1. Technologies

Illumina

Roche / 454

2. Projects and Applications

whole Genome Re-sequencing

Sequence Capture

Amplicon Sequencing

3. Outlook

Projects and Applications

May 23rd 2012, Budapest

Goals

A public database of essentially all SNPs and detectable CNVs with allele frequency >1% in each of multiple human population samples

Pioneer and evaluate methods for:• Generating data from next-generation sequencing platforms• Exchanging and combining data and analytical methods• Discovering and genotyping SNPs and CNVs from nextgen data• Imputation with and from next generation sequencing data

454, Illumina and AB SOLiD platforms

Academic genome centers in US, UK, Germany, China and platform companies

(Nature 2010, Science 2010 and Nature 2011)

May 23rd 2012, Budapest

OncoTrack, “Methods for systematic 

next generation oncology biomarker 

development”, is an international consortium of over 

60 scientists, that has launched one of 

Europe’s largest collaborative academic‐

industry research projects to develop 

and assess novel approaches for 

identification of new markers for colon 

cancer. 

May 23rd 2012, Budapest

DNA RNA

Protein

MethylationMutations

mRNAmiRNACell lines

Tissues

Sequencing

Bioinformatics

May 23rd 2012, Budapest

RNAseq

expression profiling

total RNA Isolation

quality control

small RNA Depletion

dsDNA generationusing random hexamers

Illumina library preparation

massive parallel sequencing

Mapping

May 23rd 2012, Budapest

GWAS Candidate Genes

Whole Exome

0.5 –

5 MB 35 MB385 k Array, NimblegenIn-solution Enrichment

2.1 Mio Array, NimblegenIn-solution Enrichment

Sequence Capture

May 23rd 2012, Budapest

Targeted Resequencing: Project outline

Identification patients Sequence capture

Next-Gen sequencing

“Bioinformatics”Follow-up sequencingFunctional characterization

Work-flow

Sample preparation

May 23rd 2012, Budapest

Principle of sequence capture

DNA Preparation Enrichment of target regions Sequencing

A1 SP1

A2

genomicDNA

Fragments (200‐500bp)

Ligation of adapters

Hybridization 

Selection with 

streptavidin beads

Amplification and 

Quantification

May 23rd 2012, Budapest

Cleft lip with or without cleft palate (CL/P)Cooperation with M. Nöthen and E. Mangold

• Prevalence among live births ~ 1 : 1.000

• Risk for siblings 1 : 20 –

1 : 25

• λs

40 -

50

Epidemiology of Epidemiology of nonsyndromic CL/Pnonsyndromic CL/P

Mangold E. et al. (2010), Nature Genetics

May 23rd 2012, Budapest

3 Loci on chr 8 (640Kb), 10 (161Kb) and 17 (340Kb) in 20 affected individuals

MID tagging and pooling of 10 samples

Enrichment using the 2.1M NimbleGen array

Sequencing on a Roche GS FLX system

Cleft lip with or without cleft palate (CL/P)Resequencing as follow up of GWAS

May 23rd 2012, Budapest

Mapping

May 23rd 2012, Budapest

•• 6.726 unique variants (>10 x Coverage)

•• 3.783 variants not listed in dbSNP (hg19)

•• 4 coding Variants

•• Detection of structural Variations not yet finished

Cleft lip with or without cleft palate (CL/P)Preliminary Results

May 23rd 2012, Budapest

Mutation detection pipeline quality

Concordance with Affymetrix Array "genome-wide human SNP array 6.0"

May 23rd 2012, Budapest

AimDetection and quantification of new and known variants

METHODAmplification and sequencing of target regionsMultiple alignments of sequences against a reference

reference

patient sequences

Amplicon Sequencing

May 23rd 2012, Budapest

Amplicon Sequencing

B-primer (21 bp)

MID

MID

key

key

A

B

A-primer (21 bp)

Sequence of interest

Locus‐specific PCR 

amplification

emPCR Amplification

and sequencing

Long reads required to sequence through the locus specific 

primer, enable haplotyping over longer distances•

100s to 1000s of amplicon clones sequenced simultaneously

May 23rd 2012, Budapest

Amplicon Sequencing

IRON StudyInterlaboratory Robustness of NGS

May 23rd 2012, Budapest

Amplicon Sequencing

IRON StudyHematology Focus Group

May 23rd 2012, Budapest

Amplicon Sequencing

IRON StudyResults

• per each amplicon, the median coverage eached was 713-fold, ranging from 553-fold to 878-fold

• a total of 92 variants (44 distinct mutations and 10 SNPs) were observed

• in comparison to data available from Sanger sequencing, 454 amplicon deep-sequencing detected all mutations and SNPs that were previously known

• we here confirm in a multicenter analysis that amplicon-

based deep-sequencing is technically feasible, achieves a high concordance across multiple laboratories, and therefore allows a broad and in-depth molecular characterization of hematological malignancies.

Kohlmann et al. (2011), Leukemia

May 23rd 2012, Budapest

Sensitivity of mutation detection as a function of tumor cell content

Querings et al. (2011), PlosOne

May 23rd 2012, Budapest

Establishment of small scale NGS systems

Analysis of complete genomes

Personalized medicine

Outlook

May 23rd 2012, Budapest

Acknowledgments

Hans Lehrach

Bernhard Herrmann

Hilger Ropers

Martin Vingron

Michal SchweigerMartin Kerick

Markus Ralser

Sequencing Facility:Ilona HauenschildSonia PaturejTina MoserIna LehmannNorbert MergesDaniela RothSabrina Rau

Heiner KuhlSven KlagesMartin Werber

May 23rd 2012, Budapest

Thanksfor your attention!