Nucleation of Vortices in Superconductors in Confined Geometries W.M. Wu, M.B. Sobnack and F.V....

Post on 28-Dec-2015

222 views 4 download

Tags:

Transcript of Nucleation of Vortices in Superconductors in Confined Geometries W.M. Wu, M.B. Sobnack and F.V....

Nucleation of Vortices in Superconductors in Confined

Geometries

W.M. Wu, M.B. Sobnack and F.V. Kusmartsev

Department of Physics Loughborough University, U.K.

July 2007

Nucleation of vortices and anti-vortices

1. Characteristics of system

2. Nucleation of vortices

3. Physical boundary conditions

4. Characteristics of vortex interaction

Geim: paramagnetic Meissner effect Chibotaru and Mel’nikov: anti-vortices, multi-

quanta-vortices Schweigert: multi-vortex state giant vortex Okayasu: no giant vortex

A.K. Geim et al., Nature (London) 408,784 (2000).L.F. Chibotaru et al., Nature (London) 408,833 (2000).A.S. Mel’nikov et al., Phys. Rev. B 65, 140501 (2002).V.A. Schweigert et al., Phys. Rev. Lett. 81, 2783 (1998).S. Okayasu et al., IEEE 15 (2), 696 (2005).

Total flux = LΦ0

Grigorieva et al., Phys. Rev. Lett. 96, 077005 (2006)

Applied H

Baelus et al.: predictions different from observations[Phys. Rev. B 69, 0645061 (2004)]

Theories at T = 0K

Experiments at finite T ≠ 0K

This study: extension of previous work to include

multi-rings and finite temperatures

Model

H = Hk = Aapp

d

R < λ2/d = Λ, d << rc

H~Hc1

R

Local field B ~ H

T = 0K

H < Hc1: Meissner effect

H > Hc1: Vortices penetrate

Flux Φv = qΦ0 , Φ0 = hc/2e

H

rxBHBG 3222 d)()(8

1

H

js = -(c/42)A js = -(c/42)(A-Av)

js

js

Method of images

ri

r’i = (R2/r)ri

Boundary condition: normal component of js vanishes

image anti-vortex

Φi = qΦ0

Φi (r)= qΦ0 /2r

Av = [Φi (r-ri) - Φi (r-r'i)]θ

Φi -Φi

Hr1

r2

L > 0 vortex L < 0 anti-vortex r1 < r2

LΦ0

N1 vortices qΦ0

N2 vortices qΦ0

T = 0 K

02 / RHh

),()0,(')0,('

ln2ln2ln4

),,(

211221

2211212

2

NNgNgNgLh

zqLNzqLNr

RNq

hNNLg

c

Gibbs free Energy

zi = ri/R

Gd

tLNg 20

2)(16),,(

1

12

4222

2222

)/(sin4

)/2cos(21ln

2)1(

)1ln(ln)1(ln)0,('

iiii

ii

iiiiiii

N

n

c

Nn

zNnzqNzqhN

zqNzqNNr

RqNNg

1

1

1

1

222

2 1

212121

212121

2112 ))//(2cos(2

))//(2cos(21ln),(

N

m

N

n NmNnzzzz

NmNnzzzzqNNg

α

Finite temperature T ≠ 0K

TSTGG )0(

)lnlnlnln

ln2ln2(),,(),,,(

2121

2121

NNzz

r

RtNNLgtNNLg

c

Gibbs free energy S=Entropy

220

/)(16 dTktB

Dimensionless Gibbs free energy:

Minimise g(L,N1,N2,t) with respect to z1, z2

Grigorieva: Nb

R ~ 1.5nm, 0 ~ 100nm

Tc ~ 9.1K, tc ~ 0.7

T ~ 1.8K, t ~ 0.14

(L, N1): a central vortex of flux LΦ0 at centre, N1 vortices (Φ0) on ring z1

(L,N1,N2): a central vortex, N1 vortices on z1 and N2 on z2

Results: t = 0 (T = 0K)

Results: t = 0.14 (T = 1.8K)

H=60 Oe h=20.5

Vortex Configurations with 90

– (0,2,7)

* * (1,8)

Total flux = 90

(L,N1,N2)=(0,2,7) at t = 0.14

(L,N)=(1,8) at t = 0

Vortex Configurations with 100

– (1,9)

* * (0,2,8)

- - (0,3,7)

H = 60 Oe h = 20.5

Total flux = 100

(L,N1,N2)=(0,3,7)t = 0.14

(L,N1,N2)=(0,2,8)t = 0.14

(L,N)=(1,9)t = 0

Conclusions and Remarks

Modified theory to include temperature Results at t = 0.14 in very good agreement

with experiments of Grigorieva + her group

Extension to > 2 rings/shells Underlying physics mechanisms