Novel Strategies for Nanostructuring Liquid Oils into ...€¦ · Directional Crystallization •...

Post on 30-Apr-2020

2 views 0 download

Transcript of Novel Strategies for Nanostructuring Liquid Oils into ...€¦ · Directional Crystallization •...

Novel Strategies for

Nanostructuring Liquid Oils

into Functional Fats

Alejandro G. Marangoni

University of Guelph

Novel strategies for structuring liquid oils

Structured

Oil

Fat crystal networks of stearic

acid rich fats in high oleic oils Structuring agent > 40% Polycrystalline fibrillar and

particle organogels Structuring agent 1-8%

Structured emulsions Structuring agent 3-6%

Polymer organogels

Structuring agent 3-10%

Target for “Fats” of the Future….

• Structured emulsions: decreased lipid content

(30-50% water), O/W and W/O emulsions

• Structured oils (oleogels): polymers, self-

assembled amphiphylic small molecules,

structuring fats. Minimum amounts of saturated

fatty acids for functionality

• Ultimate challenge: sustainable and non-

hydrogenated? = no palm oil and no fully

hydrogenated stocks.

Structuring Strategies

Building blocks can be of three types:

• Crystalline Particles and Fibers • monoacylglycerols

• fat crystals (triacylglycerols)

• plant waxes

• high melting emulsifiers

• ceramides

• Crystalline nanofibers • phytosterols + oryzanol

• 12-hydroxystearic acid

• Polymers • physical gels

• chemical gels

Organogels

Definition of a gel

A substance is a gel if it has a

continuous structure with macroscopic

dimensions that is permanent on the time

scale of an analytical experiment and is

solid-like in its rheological properties.

Flory, 1974

A gel is an organogel if

The immobilized solvent phase is an

organic liquid (vs. hydrogel)

Proposed SAFIN Organogel Definition

Self-standing, thermoreversible,

anhydrous, viscoelastic

materials structured by a three-

dimensional supramolecular

network of self-assembled small

molecules in an organic liquid at

concentrations no greater than

their percolation threshold,

usually 2% (w/w).

Cholesteryl 4-(2anthryloxy) butanoate in 2-octanol

Twisted fiber cross-section is 26.3 nm by 8.2 nm

Terech and Weiss, 1997

SAFIN microstructure: a polymer

network with an average mesh size

Terech and Weiss, 1997

Percolation and fractal theory scaling laws are obeyed

Reported organogelators relevant to food

applications (true and untrue)

• Lecithin + Sorbitan Tristearate

• Sorbitan monostearate

• Long-chain alcohols + fatty acids (18 carbon

long optimal)

• Glycerol Monostearate

• Phytosterols + Oryzanol

• Long chain, hydroxy fatty acids (12-

hydroxystearic acid or ricinelaidic acid)

• Waxes

• Ceramides

12-hydroxystearic acid (HSA)

Ricinelaidic Acid

H

O H

O

O

OH

O

OH

Directional Crystallization

• Directional Crystallization & SAFiN

Formation

13

Source: Kuwahara and others. 1996. Chemistry Letters. p 435-436.

Source: Terech and others. 1994. Langmuir. p 3406-3418

Fiber structure

Terech and Weiss, 1994

Kuwahara,1996

30µm thick sample of 2.5%HSA stored at 30oC for 24 hours, with slices taken every 3µm and

stacked using a maximum pixel intensity procedure. 100m magnification bar.

17

12-HSA

-10 0 10 20 30 40 500

1

2

3

4

5

Temperature (C)

RE

A (

%)

Fat-like

Translucent-

Opaque Gel

Clear Gel Liquid

REA

Solvent effects

-10 0 10 20 30 40 500

1

2

3

4

5

Temperature (C)

RE

A (

%)

-10 0 10 20 30 40 500

1

2

3

4

5

Temperature (C)

RE

A (

%)

CANOLA

OIL

DAG

OIL

SESAME

OIL

Liquid

Clear-gel

Translucent-opaque gel

Fat-like

Thick Liquid

-10 0 10 20 30 40 500

1

2

3

4

5

Temperature (C)

RE

A (

%)

Effect of setting temperature

on gel properties

30oC 5oC

Temperature Effects on HSA SAFIN structure

5oC

30oC

Bound oil detected by pNMR using

CMPG decay profiles

0 100 200 300 400 5000

25

50

75

100

125

1%

2%

3%

A

5%

Time (Seconds)

Am

pli

tud

e (

a.u

.)

0 100 200 300 400 5000

25

50

75

100

1255C

15C

20C

30C

B

Time (Seconds)

Am

pli

tud

e (

a.u

.)

At 5oC there is a very large amount of highly confined oil and at 30oC there is far

less This supports a highly branched network at 5oC and a more annealed network

at 30oC

Crystallization of Trapped Oil

-50 -45 -40 -350.0

0.1

0.2

0.3

0.4

0.5

0.6

5oC

30oC

Temperature (oC)

Heat

Flo

w (

W/g

)

Enthalpy

Peak

Temp.

Onset

temp.

End

Temp.

Peak

width

J/g oC oC oC oC

5oC 40.77 -43.13 -38.51 -48.40* 9.89*

30oC 40.01 -43.10 -38.92 -49.99* 11.07*

Effect of Storage Temperature on G’

5oC 15

oC 20

oC 30

oC 40

oC

100

1000

10000

100000

1000000

10000000

100000000A

Storage Temperature (oC)

G' (

Pa)

5oC 15

oC 20

oC 30

oC 40

oC

100

1000

10000

100000

1000000

10000000

100000000B

Storage Temperature (oC)

G' (

Pa)

5oC 15

oC 20

oC 30

oC 40

oC

100

1000

10000

100000

1000000

10000000

100000000C

Storage Temperature (oC)

G'(

Pa)

5oC 15

oC 20

oC 30

oC 40

oC

100

1000

10000

100000

1000000

10000000

100000000D

Storage Temperature (oC)

G' (

Pa)

A) 1%HSA, B) 2%HSA, C) 3%HSA, D) 5%HSA

Shear Effects - Static

Edmund Co, M.Sc.

Shear Effects - 400 s-1

Edmund Co, M.Sc.

1 °C per Minute ↑ Slow Cooling Rate Fibrillar Microstructures

Spherulitic Microstructures Fast Cooling Rate

30 °C per Minute ↓

Cooling Rate and

Microstructure

30

Source: XY Liu and PD Sawant. 2002. Advanced Materials 14(6).

Cooling Rate and Mechanical

Properties

31

Oscillatory Shear Strain and Microstructure

Increasing Oscillatory Strain During Crystallization

Low Cooling Rate (1 °C / min)

32

Thickness: 4 μm

20 μm

32 μm

Oscillatory Shear Strain and Microstructure

Increasing Oscillatory Strain & Frequency During Crystallization

High Cooling Rate (30 °C / min)

33

Oscillatory Shear Strain and

Mechanical Properties

34

Oscillatory Shear Strain and

Mechanical Properties

35

Oscillatory Shear Strain and Oil-Binding Capacity

36

Gelation and Crystallization

37

Oscillatory Shear Stress and Mechanical

Properties

38

Oscillatory Shear Stress and Oil-

Binding Capacity

39

Ceramide Organogelator

Sphingolipids, ceramides, glycolipids

C2 Ceramide

C2 Fiber Morphology

2% C-2 ceramide in canola oil or 5% C-24 ceramde in oil

Sphingolipids

Fatty acid content

Fatty acid Egg SM Milk SM

mol%

14:0 ND 3.4

16:0 86.6 23.4

18:0 5.9 2.6

20:0 1.5 0.6

20:4 ND 1.5

22:0 3.0 18.2

23:0 ND 30.0

24:0 3.0 17.7

24:1 ND 2.6

Milk Sphingomyelin treated with

sphinomyelinase

7% sphingomyelin in canola oil

𝛽-sitosterol + 𝛾-oryzanol

Bot and Agterof (2006)

CH3

OH

CH3

CH3

R

CH3

CH3

CH3

O

OOH

O

CH3

beta-sitosterol

R=H campestryl ferulateR=CH3 sitosteryl ferulate- double bond = campestanyl, sitostanyl ferulate

ferulic acid

47

Plant Waxes

Effective at low concentrations (1-4%)

Derived from natural (plant) sources

Commercially/widely available

– Rice Bran Wax (RBX)

– Sunflower Wax (SFX)

– Candelilla Wax (CLX)

– Carnauba Wax (CRX)

48

Critical Concentration (C*)+

Material RBX SFX CLX CRX

Ester Content (%) 92-97 97-100 27-35 84-85

Free Fatty Acid (%) 0-2 0-1 7-10 3-3.5

Free Fatty Alcohol (%) - - 10-15 2-3

Hydrocarbons (%) - - 50-65 1.5-3

Resins/Others(%) 3-8 0-3 - 6.5-10

Melting Point (C) 78-82 74-77 60-73 80-85

Data provided by Koster Keunan Inc.

+ All concentrations recorded as (w/w).

CLX – 2%

CRX – 4%

RBX – 1%

SFX – 1%

49

Brightfield Microscopy at C*

Sample RBX SFX CLX CRX

% Wax (w/w)

1 1 2 4

Avg. Length (um)

16.2 20.4 3.9 19.2

Standard Deviation

+ 4.63 + 6.27 + 0.97 + 7.02

SFX

CLX CRX

RBX

50

X-Ray Diffraction – Neat Waxes

51

Differential Scanning Calorimetry - Tm

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Wax Concentration (w/w)

Tm

(°C

)

RBX

SFX

CLX

CRX

52

Differential Scanning Calorimetry - Tc

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Wax Concentration (w/w)

Tc (

°C)

RBX

SFX

CLX

CRX

53

Differential Scanning Calorimetry – ΔHm (J/g)

0

50

100

150

200

250

0 20 40 60 80 100 120

Wax Concentration (w/w)

En

tha

lpy o

f M

eltin

g (

J/g

)

RBX

SFX

CLX

CRX

54

Differential Scanning Calorimetry – ΔHc (J/g)

0

50

100

150

200

250

0 20 40 60 80 100 120

Wax Concentration (w/w)

En

tha

lpy o

f C

rysta

lliza

tion

(J/g

)

RBX

SFX

CLX

CRX

55

RBX SFX CLX CRX

Concentration 1% Neat 1% Neat 2% Neat 4% Neat

ΔHm (J/g) 1.7 211 5.89 194 1.36 155 5.56 195

ΔSm (mJ/g/K) 4.78 595 16.9 557 25.3 464 15.8 552

SFC 0.95 93.7 1.98 97.8 2.97 99.1 3.43 98.7

Differential Scanning Calorimetry

Sato et al.

56

Controlled Stress Small Deformation Rheology

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1000 10000

Osc. Stress (Pa)

G' (P

a)

1% RBX

1% SFX

1% CLX

2% CLX

4% CRX

57

Small deformation rheology: G’ vs.

SFC for 5-10% Gels:

RBX SFX CLX CRX %

Wax SFC

(%)

G’ (Pa) Std. Dev.

(Pa)

SFC

(%)

G’ (Pa) Std. Dev.

(Pa)

SFC

(%)

G’ (Pa) Std.

Dev.

(Pa)

SFC

(%)

G’ (Pa) Std.

Dev.

(Pa)

5 3.64 1.64 x104a

4.912x103

- - - 4.1 4.77x105a

1.04x105

4.47 1.84x105a

1.55x105

6 4.36 2.18x104a

8.2x103

4.87 1.51x105a

5.642x104

4.83 6.19x105a

3.62x105

5.51 1.90x105a

1.49x105

7 5.04 4.88x105abc

2.169x105

5.56 2.08x105a

1.193x105

5.8 9.78x105a

4.08x105

6.44 1.70x105a

4.21x105

8 5.44 1.19x106bd

6.653x105

6.54 2.06x105a

9.855x104

6.66 3.19x105a

6.2x105

7.47 2.65x106b

4.50x105

9 6.01 8.3x105acd

4.387x105

7.34 3.75x105a

1.916x105

7.52 4.04x106bc

4.58x106

8.35 3.09x106b

1.14x106

10 6.91 5.05x105acd

6.018x104

8.33 2.71x105a

2.157x105

8.36 1.68x106ac

8.56x105

9.18 9.51x105a

6.88x105

58

Brightfield Microscopy – 10% Gels

RBX SFX

CLX CRX

59

Brightfield Microscopy – Image Analysis

Sample RBX SFX CLX CRX

% Wax (w/w)

1 10 1 10 1 10 1 10

Avg. Length (um)

16.2 21.1 20.4 37.5 3.9 5.9 19.2 31.3

Standard Deviation

+ 4.63 + 5.95 + 6.27 + 13.63 + 0.97 + 1.48 + 7.02 + 9.53

Needles?

Oil Binding

0 5 10 15 20 25 300

20

40

60

80

0

5

10

15

1%RBX

1%SFX

4%CRX

1%CLX

2%CLX

liquid oil

Time (hrs)

Oil

Lo

st (%

)

Oil Binding

0 5 10 15 20 25 300

20

40

60

80

0

5

10

15

1%RBX

1%SFX

4%CRX

1%CLX

2%CLX

liquid oil

Time (hrs)

Oil

Lo

st (%

)

r2>0.999

Two-step kinetics

PLATEAU (%) 25.98 59.34 50.04 11.72 31.36 9.993

Y0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0

% FAST 92.28 33.70 46.37 91.32 22.53 46.58

kFAST (h-1)

0.1665 0.3294 0.3053 0.1040 0.3006 9.663

kSLOW (h-1) 3.095 2.872 2.670 1.349 3.017 173.0

Fast half-life (h) 4.164 2.104 2.271 6.663 2.306 0.07173

Slow half-life (h) 0.2239 0.2414 0.2596 0.5139 0.2297 0.004007

1%CLX 1%RBX 1%SFX 2%CLX 4%CRX Free oil

0 1 2(1 ) (1 )FAST SLOWk t k tY Y Y e Y e

64

Oil Binding Mechanism – Porosity

Sample kFAST

[h-1] Fractal

Dimension (Db)

SFC (%)

% Fill

1% RBX 0.330 1.62 0.95 19.3

1% SFX 0.305 1.55 0.97 13.5

2% CLX 0.104 1.75 1.97 29.3

4% CRX 0.301 1.40 3.94 8.41

Oil Binding Mechanism – Porosity and crystal size

Sample kFAST

[h-1] Maximum Leakage

(%)

Fractal Dimension

(Db)

SFC (%)

Porosity (1-fill)

Crystal length (um)

1% RBX

0.330 59.3 1.62 0.95

0.807 16.2

1% SFX

0.305 50.0 1.55 0.97

0.865 20.4

1% CLX

0.166 26.0 1.75 1.97

0.707 3.9

4% CRX

0.301 31.4 1.40 3.94

0.916 19.2

Potential Applications of Edible Oil Organogels

1) Inhibition of oil migration

2) Controlled release of bio-actives

3) Healthy structuring of food lipids

4) Stabilization of w/o emulsions

β-Carotene

β-Carotene, a lipophilic phyto-nutrient

with antioxidant properties, has been

associated with a decreased risk for a

number of chronic diseases.

β-Carotene

Bioavailability of β-C: 10-30%

The presence of dietary fats in the

digestive tract increases the

bioavailability of β-C.

Maximum β-C micellarisation was reached by 30 min for oil; but not until 75 min for gel.

β-Carotene release was significantly delayed by the immobilization of oil within the 12-HSA network.

Healthy Oil Structuring

TAGs : 12-HSA Organogel < Butter and Margarine (p<0.05)

Emulsion Stabilization 0 15 30 120 d1 d2 d4 d7 d14 d21

80:20 +

12-HSA

The addition of 12-HSA to

w/o emulsions

significantly increases

their stability.

Time at 23°C:

80:20

Day 1

Day 7

Day 14

Day 21

80:20:2

Structured emulsions:

Monoglyceride Gels

O C

O

CH3

CH2OH

CH2OH

H

Monoglyceride Monostearin (GMS)

Amphiphillic Molecule

Forms lyotropic liquid crystals in water

+ ionic co-surfactant

MAG + stearic acid in alkaline water

0.00 0.05 0.10 1.4 1.5 1.6

4.18134

89.2

67.2

54.3

194

97.0 64.7

70oC (L)

45oC (L)

268

q (Å-1)

Inte

nsity

Zetzl et al., 2009

Critical Packing Parameter

(Israelachvili, Mitchell, Ninham, 1976)

VS

a l

V= molecular volume

a= hydrated cross sectional area of polar head group

l= molecular length

Sagalowicz, Leser, Watzke and Michel, TIFS 17: 204-214 (2006)

Patented technology - U.S. Patent 7357597

Any oil Hydrogen bonding

between vesicles

Multi-layer monoglyceride

walls interspersed

with water

Any oil

Vesicle Vesicle

Patent Priority date: May 7, 2004

Oil-soluble nutraceuticals and

pharmaceuticals in core

Water-soluble nutraceuticals

and pharmaceuticals in walls

Delivery of Functional Ingredients

Monglyceride multilayers

surrounding oil droplets

0.03 0.08 0.13 0.18 0.23 0.28 0.33

MAG gel

MAGcrystal

d00150Å

A

q (Å-1)

Inte

nsity

1.1 1.3 1.5 1.7 1.9

MAG gel

MAG crystal

MAG in water

q (Å-1)

O

O

O

O

O

O

O

O

O

O

O

O

OH OHOH OHOH OHOH OHOH OHOH OH

O

O

O

O

O

O

O

O

O

O

O

O

OHOH OHOH OHOH OHOH OHOH OHOH

O

O

O

O

O

O

O

O

O

O

O

O

OH OHOH OHOH OHOH OHOH OHOH OH

O

O

O

O

O

O

O

O

O

O

O

O

OHOH OHOH OHOH OHOH OHOH OHOH

O

O

O

O

O

O

O

O

O

O

O

O

OH OHOH OHOH OHOH OHOH OHOH OH

O

O

O

O

O

O

O

O

O

O

O

O

OHOH OHOH OHOH OHOH OHOH OHOH

O

O

O

O

O

O

O

O

O

O

O

O

OH OHOH OHOH OHOH OHOH OHOH OH

O

O

O

O

O

O

O

O

O

O

O

O

OHOH OHOH OHOH OHOH OHOH OHOH

Presence of liquid crystalline phases of

monoglycerides are necessary for

structure formation

L

Data 1

10

50

100

150

O

O

O

O

O

O

O

O

O

O

O

O

OH O HOH OHOH OHOH OHO H OHOH OH

O

O

O

O

O

O

O

O

O

O

O

O

OHOH OHOH OHOH OHOH OHOH OHOH

O

O

O

O

O

O

O

O

O

O

O

O

OH OHO H OHOH OHOH OHOH OHOH OH

O

O

O

O

O

O

O

O

O

O

O

O

OHOH OHOH OHOH OHOH OHOH OHOH

O

O

O

O

O

O

O

O

O

O

O

O

OH OHOH OHOH OHOH OHOH OHOH OH

O

O

O

O

O

O

O

O

O

O

O

O

OHOH OHOH OHOH OHOH OHOH OHOH

O

O

O

O

O

O

O

O

O

O

O

O

OH OHOH OHOH OHOH OHOH OHOH OH

O

O

O

O

O

O

O

O

O

O

O

O

OHOH OHOH OHOH OHOH OHOH OHOH

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OHOHOHOH OHOH OHOH OHOH OHOH OHO H O HOH

OHOHO HOH OHOH OH OH OH OH OH OH OH OH OH O H

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OHOHOHOH OHOH OHOH OHOH O HOH OHOH OHOH

OHOHOHOH OHOH OH OH OH OH

OH O H O H OH OH OH

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OHO HOHOH OHOH OHOH OHOH OHOH OHOH OHOH

OHO HO HOH OHOH OH OH OH OH OH OH OH OH OH OH

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OHO HO HOH OHOH OHOH OHOH OHOH OHOH O HOH

OHO HO HOH OHOH OH OH OH OH OH OH OH OH OH O H

O

O

OHO H

O

O

OHOH

O

O

OHOH

O

O

OHO H

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

O HOH

O

O

OHOH

O

O

OHO H

O

O

OHOH

O

O

OHOH

O

O

O

O

OH

O

O

OH

O

OHO H

O

OH

O

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHO H

O

O

O HOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

OO O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OHO

O

O

O

OH

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OOH

O

O

OO

O

O

O

O

O

O

O

O

O

O

OH

O

O

OH

O

O

OHOH

O

O

OHOH

O

O

OHO H

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHO H

O

O

O HOH

O

O

OHOH

O

O

OHOH

O

O

O HOH

O

O

OHOH

O

O

OHOH

O

O

O H OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

O H OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

O

O

OH

O

O

OH

O

OH

O

OHO H

O

O

OH

O

OHOH

O

OH

O

O

O

OH

O

O

OHO H

O

O

OHOH

O

O

OHOH

O

O

O HOH

O

O

OHOH

O

O

OHOH

O

O

OHO H

O

O

O HOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

OHOH

O

O

O HOH

O

O

OH OH

O

O

OH O H

O

O

O H OH

O

O

OH O H

O

O

OH O H

O

O

OH OH

O

O

O H OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

OH OH

O

O

O H OH

L L (-gel)-gel

(coagel)

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O HOHOHOH OHO H OHOH OHOH OHOH OHOH OHOH

O HOHOHOH OHO H OH OH OH OH OH OH OH OH OH OH

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OHOHOHOH OHOH OHO H OHOH OHO H OHOH OHOH

OHOHOHOH OHOH OH OH OH OH O H OH OH OH OH OH

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OHOHOHOH OHOH O HOH OHO H OHOH OHOH OHOH

OHOHOHOH OHOH OH O H O H OH OH OH OH OH OH OH

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OHOHOHOH OHOH OHOH OHOH OHOH O HOH OHO H

OHOHOHO H OHOH OH OH OH OH OH OH OH O H O H OH

-gel coagel

Fluorescence microscopy

Coumarin 6

87

Fresh gel 25°C, 2 weeks 45°C, 2 weeks

100 μm 100 μm 100 μm

Wang and Marangoni, RSC Advances 2014,

Fresh gel

morphology

88

100 μm 100 μm

100 μm

-gel stabilization

• Low-temperature (5oC)

• Specific co-surfactants (SSL)

• Surfactant : Co-surfactant ratio (1:9-1:19)

• Absence of shear

• Slow cooling (hot fill!)

More complete view of phase behavior

Wang and Marangoni, RSC Advances 2014,

So, does it work as a

shortening?

GLUTEN PEAK TESTER

Paddle

Sample Cup

Paddle

SAMPLE GPT CURVE

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12

To

rqu

e (

BE

)

Time (min)

Max Torque (BE)

Peak Max Time (min)

Lift Off Time (min)

Time required for gluten to

aggregate and exhibit maximum

torque on the spindle, before

breaking down

Peak max time with lipid addition

0

1

2

3

4

5

6

0 6 12 18 24 0 6 12 18 24

Tim

e (m

in)

Lipid content (% of flour on equivalent lipid basis)

MAG Gel

Mixture

IE Soy

Oil

Hard Wheat Flour Soft Wheat Flour

The proof is in the danish…

Chocolate Chip Cookie – 50%

Reduction in Sat Fats

101

Structure influences physiological response!

www.coasun.com

Polymer Oleogels

Ethylcellulose

Degree of substitution ↔ Solubility

MAX 3 substitutions

per glucose

W. Koch. J. Indust. Eng. Chem., 1937

5 10 15 20 25 30 35 40 45 50 55

% Ethoxy

Num

ber

of

ethox

y

gro

ups

per

glu

cose

3.0

2.0

1.0

0

Commercial EC ~ 48% C2H5O 2.4 -2.5 DS

Properties are dependent upon the degree of etherification

or substitution (DS)

Polar & non-polar organic solvents

Water

Basic aqueous solution

EC Varieties

• Different varieties – Expressed as a cP value – 10 cP, 45 cP, etc…

• Measured by making a 5% solution – EC in 80% toluene and 20% ethanol

– Measured in a rotational viscometer @ 25 oC

• Extrapolating from the work of Rowe (1985) – 10 cP – 24 kDa

– 45 cP – 57 kDa

– 100 cP – 74 kDa

R. C. Rowe, Int. J. Pharm., 1986, 29, 37–41.

106

Viscosity-MW

viscosity ↔ length of the polymer molecule

(i.e. degree of polymerization)

Indirect measurement of the molar weight of the polymer

Molar weight = k (happ)n

Molar weight ↔ Mechanical properties of the gel

Commercial EC: 4, 10, 22, 45, 100, 300, … [cP]

SEC HPLC

108

EC MW

109

EC Type

Peak Elution

Time (min)

Estimated Mp

(kDa)

4 cP 33.04 11.1

10 cP 32.79 13.0

20 cP 32.26 18.1

45 cP 31.48 29.4

100 cP 31.03 39.0

300 cP 30.10 69.6

Thermal Properties

110

Gel Formation

• Crystalline ethylcellulose added to an oil

• Heated to above the glass transition temperature

– ~ 140oC

• Gels below the gelation

temperature when cooled

• Stable for a year or more t

111

112

140oC

Ethylcellulose Powder

Oleogel Preparation

> Tg

10% 90%

< 30

mins

112

+ surfactant

1:3 w/w

113

Need to go above Tg

Tg

TM

Gel formation now possible

113

Cryo-TEM of EC oleogel after extensive

isobutanol deoiling

EC Oleogels: Oven method

115

Roles of each component

• Polymer strands provide the back-bone for cross-linked

network

• Surfactant acts as a “plasticizer” in gelation process

(different from its well-known ‘micellar solubilization effect’)

• Gelation is a swelling-driven process - Oil acts like a

medium

+ oil

heating

&

stirring

clear

solution

cooling

gel !

Plasticization

• Plasticizer interacts with gel sites, causing the polymer chains to fall apart in certain places

• Causing

• Reduction in Tm (due to reduced

friction and entanglement)

• Reduction in Tg (due to decrease in H-bonding and increase in free volume)

• Increase in permeability

• Advantages are

• lower thermal processing

temperature

• improved thermal stability of composites

• better toughness and flexibility

Gel mechanical properties - methods

• Texture Profile Analysis (Texture Analyzer)

– Samples – 15 mm x 15 mm x 10 mm

– 50 % Compression

– Duplicate batches of 15 samples each

• Back extrusion (Texture Analyzer)

– 30 mm penetration into the sample

– (Approxmately 30 mL in a 50 mL centrifuge tube)

– Duplicate batches of 6 samples each

118

Back Extrusion

119

30 mm

0

20

40

60

80

100

120

0 5 10 15 20 25 30

Fo

rce (

N)

Penetration Distance (mm)

Back extrusion profile

Fmax

Texture Profile Analysis

• TPA:

– Compress sample to 50% of

original height (x2)

– Provides a variety of parameters

• Hardness, chewiness, springiness..

TA-XT2 Texture Analyzer

121

Oil Type

> 60% 18:1

> 53% 18:2

> 55% 18:3

122

123

Viscosity / MW Effect • Canola Oil Oleogels with 10% EC

123

124

Oil x MW Effect 124

FORCE @ 1 MM PENETRATION

125

125

126

Power-law scaling

4%

6%

8%

10%

126

10%

8%

6%

127

SCANNING ELECTRON MICROSCOPY

• Modification of previously utilized techniques by Laredo et al. (2011)

and Dey et al.(2011)

• 3 Different Oil types

– Canola Oil, Soybean Oil, Flaxseed Oil

– Posses a wide range in fatty acid composition

• 2 different EC molecular weights

– 45 cP (10-14%)

– 100 cP (10%)

• Wash the sample surface with a solvent

to expose the oleogel matrix

– Isobutanol

– No fracturing of the sample!!

127

128

SAMPLE PREPARATION

• EC added to oil and heated above glass transition temperature

• Poured onto glass slide during cooling

• After 24 h, various amounts of isobutanol dropped on the gel to

remove surface oil

• Samples were glued to a copper holder, frozen in a liquid nitrogen

slush, sublimated for 30 minutes, and coated with 30 nm of gold

Oleogel Sample

128

129

129

Partial Oil Removal

130

EC Oleogel Microstructure Ref: Zetzl et al., Food Funct., 2012, 3, 327-337.

130

131

Canola Oil

14% 45 cP EC

3.1 mL Isobutanol

131

132

Cryo-scanning electron micrographs of canola oil oleogels (oil partially removed)

132

133 Above oleogels made using:

10 % Ethylcellulose, 45 cP

Washed with 2.4 mL Isobutanol

133

Oil type – microstructure –

mechanical strength

134

Concentration-microstructure-

mechanical strength

Canola Oil Organogels (45 cP) With Varying

Ethylcellulose Concentrations

Above oleogels made using:

Canola Oil, 45 cP Ethylcellulose

Washed with 2.4 mL Isobutanol

y = -0.3804x + 8.1692

R2 = 0.994

134

9%

11%

13%

15%

135

MW-microstructure-mechanical strength

Above oleogels made using:

10 % Ethylcellulose, 45 cP and 100 cP

Washed with 2.4 mL Isobutanol

135

136

Oleogel Use In Frankfurters

• Comminuted (finely ground) meat product

– Very similar to a hot dog

– Typical composition: trimmed meat, added fat,

water/ice, salt, phosphate

136

Sample Preparation

• Frankfurter batters were made using a typical

formulation and processing conditions used in industry

– 25% Fat and 12% protein

• 35 g of prepared batter added to 50 mL centrifuge

tubes

• Cooked to 72 oC in 1.5 hr using a water bath

137

HARDNESS OF

FRANKFURTERS

138

138

CHEWINESS OF

FRANKFURTERS

139

139

140

Canola Oil

Canola Oleogel

Beef Fat

100% replacement of added fat

Fat Globules

140

141

141

Canola Oil Product

- No globules greater than 23 µm

Median Fat Globule Size

- Beef Fat Control: 25 µm

- Canola Oil Oleogel: 7 µm

- Canola Oil Control: 3 µm

142

Advantages of Using Oleogels

• Little to no process modifications required

• Produces products that are texturally similar to animal fat control products

• Clean Label (few ingredients)

– Meat, Salt, Ethylcellulose, Vegetable Oil

• Provides health benefits of mono and polyunsaturated fatty acids

• Added potential for nutraceutical delivery / encapsulation

– Lipid soluble molecules such as lycopene, β-carotene, Vitamin E

142

143

References

• The top 10 causes of death, WHO, 2013

http://who.int/mediacentre/factsheets/fs310/en/index2.html

• R. P.Mensink, P. L. Zock, A. D. M. Kester and M. B. Katan, Am. J. Clin. Nutr., 2003, 77, 1146–1155.

• Mozaffarian D, Clarke R (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur J Clin Nutr 63(Suppl 2):S22–S33

• EC Structure image from ETHOCEL Handbook, Dow Cellulosics

• R. C. Rowe, Int. J. Pharm., 1986, 29, 37–41.

• T. Laredo, S. Barbut and A. G. Marangoni, Soft Matter, 2011, 7, 2734–2743.

• Dey T, Kim DA, Marangoni AG (2011) Ethylcellulose Oleogels. In: Marangoni AG, Garti N (eds) Edible Oleogels. AOCS Press, Urbana, pp 295-312

• Zetzl et al., Food Funct., 2012, 3, 327-337.

Acknowledgements

Natural Sciences and Engineering Research Council

Canada Research Chairs Program

Ontario Ministry of Agriculture and Food

Coasun Inc.

THANK YOU!

Questions?

?