Nodal Stress Components to Apply ASME Criteria

Post on 12-Apr-2022

8 views 0 download

Transcript of Nodal Stress Components to Apply ASME Criteria

An Effective Method for the Linearization of -

Nodal Stress Components to Apply ASME Criteria

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

,

2002e 2% 2 7 9

- 1 -

,

- 2 -

SUMMARY

The code of ASME Sec. III prescribes the general rules upon the design of a NSSS (nuclear

steam supply system). The code provides further flexibility to the design of the nuclear

structures by introducing a design by analysis concept. But it still preserves the consewatisms in

design works by imposing strict failure mechanism and controlling material properties in use. A

designer should prove the integrity of a structure under consideration by comparing the stress

intensity, which was driven from the linearization of stress at concerning section, with the

prescribed one. The recent development in computing system has enabled the commercial finite

element programs to be 8 prevailing way to structural analysis field. But only few programs

provide the procedure for stress linearization through the post-processing stage. Therefore, the

simplified method which uses nodal stresses over the concerning section is introduced instead.

But the issues related to the accuracy of nodal stress and the stability of linearized results

according to the number of nodes on a section are raised so far. In this report, an effective

method utilizing the sub-structuring technique is proposed to resolve the inherent problems

emerged from the linearization process using the nodal stress. Since the sub-structuring

technique provides a detail analysis on the concerning section, it affords to increase the

accuracy in stresses and number of node on the section also.

- 3 -

aQl-s ............................................................... 2 SUhBL4RY ................................................................ 3 4- 21 .................................................................. 4

2 . *q 3 4%l* ...................................................... 9 2.1 AShlEdl 4@ -!SI4 4gq %$ ................................... 9 2.2 %!Is1 $-q& 01-g-a *q 4%* .................................. 11

3 . ?E eqg-& 01%-@ %q 44 ..................................... 14

3.2 735 Egg-& Ol$@ +341 I 4 .................................. 15 4 w3 i3 446 Ol+@ $.q4 gq* 21

1 . A j S ................................................................ 6

3.1 I-DEASE 018@ 735 ..................................... 14

. .............................. 4.1 JZciq 7 ^ d ........................................... 21 4.2 -%-q 44 @q .................................................. 23 4.3 %q4 *%!* ................................................... 26

5 . aE ............................................................... 27 6 . %X%?! ........................................................... 28

% A ANSYSq -%q e%!@ Z!i$ ..................................... 29 -8-1 B 3% -8-qS 01%@ dg@ 84 ............................... 33

<E *3)>

3f 1 SCL& ?iiqS 8 3 T!-?l H l i Z (I-DEAS/ANSYS) .............................. 24 J€ 2 SCL& 7AdsE 834 %-q H1I.Z (I-DEAS/ANSYS) ........................... 24 3E 3 ANSYSq 3% %-q$ 01-8-e +!9@ Z!*q HlX(I-DEAS/ANSYS) ... 24

<=lg +3\>

2 3 1ASME iT8q 4% -8-q4 E%(ag@) .............................................. 7 2 3 2 *%*a -Wl A d s * Srl3 %4 ........................................................ 10 2%? 3 ~ ~ ~ ~ ~ + 2 01-m Wl 4 s ....................................... : ..................... 11 3% 4 "Wl 71s 7R'd .................................................................... 15 Z% 5 I-DEASI Ol%@ 73 EQPl4 34% J;. ............................................ 17 3% 6 CAD 7H4(5?3 a%.) .......................................................................... 17 2% 7 CAD 7fl4(%% %%lo) a71 XF!l ............................................. 18 3% 8 +41*4 $Ql& 7)?l CAD 7"l ........................................... 18 3% 9 wi EYJS~ WE ~ 3 7 - 7 1 4 3 4 e x 5zz ........ 19

- 4 -

mln

ln

h

lc

vN

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

I

v)

I

- 6 -

SBtgq QtSf4 sa84 IIl3Zf4 (Total Stress) (Membrane Stress) (Bending Stress) (Peak Stress)

- 7 -

- 8 -

1 a, =- t J1'2aidx 112

- 9 -

,

M * Y a, =- I

( I = $ ) (3)

I Total stress line Node 2

Node 1

I i I I X I I

+ t

- 10 -

-\

. . . . . . .

- 11 -

A , = h - ( T ) , Y2 + Y 2 A 2 = h . ( y ) , , , & = h . ( Y n + Yn+l ) ( 6 )

b-a where, h =- 2 2 i52 n -+-+Cy, Y1 Ym+l

(8)

= :( hi - y i + g hi-, . y, ) where, hi = Length of i th Element i=2

* JIJ

n

s W

n

4

4

W

n

2

W

n

n

L

4 c

0

3J

- ti-

ti $J - I

&-

+ =mn

I

El I 5- &-

k' u

ti- *TCJ

b I

;t b- -.- c

tc1

b'

22

--

- n-

b" v

b'

- 14 -

- 15 -

- 16 -

,

Create Part 1 I I

COPY Original Part

Initial Mesh I Sub-Region

Model Creation I

F.E. Solution

I r i 2 Y - J Sub-Region

Solution

- 17 -

I L

I

- 18 -

I A x

- 19 -

- 20 -

- 21 -

- 22 -

- 23 -

~

37

0.005% 0.017%

0.018%

0.000% 0.018% 0 .m 0.005% 0.017% 0 .ooo9b

Remark

i

- 24 -

1.0XlO'

8.0~10'

6.0~10' 0 Q

e 4.0~10' t: 2 3j 2.0~10'

0.0

-2.0~10'

4.0~10'

6.0xlO' -

4.0x106 - h Q

v) v)

2.0xro6 - 2 65 0.0 -

-2.ox10' - -4.OxlO' -

- /-- /

--c- sx ---*----SY

- -A- sz

- --- .@zT---."m--. -m - m-. -.

-

// - * A -

-. -..___ 0 ------.--__

-. -. -. --e-.-- ----- ..-. ---

--. --. ''-0 ..-

%* -. I-..

I . I . I , t , I 1 . 1

4 t , l , ' , t , 1 , 1 , 1

1 2 3 4 5 6 7

Node Location (n36-1-1841 -n846+1845-n848-n847-n37)

2% 16 sCL& 334 -%q ?$E (Sxy, Syz, Szx)

- 25 -

- 26 -

- 27 -

1 . G Hollinger & J. Hechmer, *‘ Xhree Dimensional Srress Criteria-Summary PVRC Project’’,

Journal of Pressure Vessel Technology, V01.122,2000

2. European Commission Joint Research Center,

EPERC, 1999

T.P. Pastor & J. Hechmer, “ASME Task Group Report in the Priniary Stress”, Journal of

Pressure Vessel Technology, Vol. 119, 1997

J.L. Hechmer & GL. Hollinger, “30 Stress Criteria Guidelines for Application ”, WRC

Bulletin 429, 1998.

M.L.James, GM. Smith & J.C. Wolford, “Applied Numerical Metho& for Digita!

Computation”, 1993

ANSYS, Inc., “ANSYS User h Manual”, 200 1

SDRC, “I-DEAS User S Manual”, 2001

“The Design by Analysis Manual”,

3.

4.

5.

6.

7.

- 28 -

LOADSTEP 1 SUBSTEP= 1

TILIE= 1.oooO LOADCASE= 0

THE F U U K G X.Y.Z STRESSES ARE Ih: GLOBAL CO0RDIh;ZTEs.

** MELIBRAKE **

s)( SY sz SXY SYZ SU

0.7915Ei-07 -0.2447EM7 0.993GEi-08 0.3431EtO7 0.1768Ei-05 -0.110GEM7

SI s2 s3 SIhT W\'

0.9938EtO8 0.893GEM7 -0.3482Ei-07 0.1029E4.09 0.9725EM8

** BEh'DIKG ** I=Ih'SIDE C=CEhTER O=OUTSIDE

SX SY SZ SXY SYZ SSZ

I -0.WGEi-07 0.6859EM7 -0.2738Ei-08 0.3308E+OG -0.1360E+07 -0.2361EM7

c O.Oo0 O.OO0 O.OO0 0.0o0 0.W 0.W

0 0.8066EM7 -0.6859EM7 0.2738Ei-08 -0.3308EtOG 0.1360EtO7 0.23GlEM7

SI s2 s3 SIhT Wl'

I 0.6925Ei-07 -0.7798Ei-07 -0.2772Ei-08 0.3464E+08 0.3011EiQ8

c o.Oo0 0.W O.OO0 0.W 0.000

0 0.2772EtO8 0.7798EM7 -0.6925EM7 0.34G4E08 0.3011Ei-08

- 2 9 -

** NElIBRAK'E PLUS BEhDIKG ** I=II\'SIDE CICEhTER O=OCITSIDE

sx ss sz SXY SYZ sxz I -0.1516E+06 .0.441lE+O7 0.7198E+08 0.3762Ei-07 -0.1342Ei-07 -0.3467Ei-07

C 0.7915Ei-07 -0.2447Ei-07 0.9936EtO8 0.343lEtO7 0.1768Ei-05 -0.1106Ei-07

0 0.1598EtO8 -0.9306Ei-07 0.1267EtO9 0.3101Ei-07 0.1378Ei-07 0.1255Ei-07

s1 52 s3 SIhT WI' I 0.7218Ei-08 0.6405Ei-07 -0.2346Ei-07 0.7453Ei-08 0.7056Ei-08

C 0.9938Ei-08 0.8936Ei-07 -0.3482Ei-07 0.1029E+09 0.9725Ei-08

0 0.1268E-W 0.1634Ei-08 -0.9691Ei-07 0.1365EtO9 0.1255EtO9

** PEAK ** I=IKSIDE C=CEhTER WXrrsIDE

sx SY sz SXY SYZ SXZ

I -0.3502E06 -0.1915Ei-07 -0.2070EtO6 -0.3044EM6 -0.1795Ei-07 -0.3567E+QG

C 0.3467E06 0.1918Ei-07 0.19518+06 0.3045EtO6 0.1794Ei-07 0.3556E06

0 -0.3432EtO6 -0.1921Ei-07 -0.1832E+06 -0.304GBtOG -0.1793EtO7 -0.354GE+06

Sl s2 s3 SI~T~) SEQP

I 0.9421E06 -0.2933EtO6 -0.3 12 1EtO7 0.4063EtO7 0.3607Ei-07

C 0.3 119Ei-07 0.2899E06 -0.949 1Em 0.4068Et07 0.361 1Et07

0 0.9562EtO6 -0.2866Em -0.31 17E+07 0.4073EtO7 0.3615EM7

** TOTAL ** I=II\'SIDE C=CEKXR O=OUTSIDE

SX SS sz SXY SYZ SXZ

I -0.sO18EtO6 0.2497Ei-07 0.7177Ei-08 0.3458Ei-07 -0.3137Ei-07 -0.3824Ei-07

C 0.8261EW7 -0.5298EtO6 0.9956E+08 0.3736Ei-07 0.1812Ei-07 -0.7505E+O6

0 0.1564Ei-08 -0.1123Ei-08 0.1266E-W 0.279GEi-07 -0.4 158EtO6 0.9002E+06

s1 s2 s3 SIhT SEQY mlP I 0.7213EW 0.4437EtO7 -0.2802EN7 0.7494EtO8 0.7159Et08 O.OO0

C 0.996OEtO8 0.9634Ei-07 -0.194 lEi-07 0,1015E-W 0.9627Ek8

0 0.1266EtO9 0.1592Ei-08 -0.1152EM8 0.1381E~N 0.1266EtO9 0. OOO

- 30 -

I

PRIAT LIAXARIZED SIRE!S THROUGH A SECTIoh: D E F I A ! BY PATH= SCL DSYS= 0

***** Posrl LIh’EARIZED STRESS LISTIKG +****

IKSIDEE;ODE= 36 ocrrSIDEKoDE= 37

L o m m 1 suBsIEP= I

T I E = 1.oooO LOAD CASE= 0

THE FOLLOWING X.Y.2 STRESSES ARE IK GLOBAL COORDIRATES.

** hEME3RAKE **

sx SI’ SZ SXI SYZ SXZ

0.74 13EtO7 -0.5204EtO7 0.9250E4-08 0.1349E+07 0.6655E+06 0.1562EtO7

s1 s2 s3 SIN SEQV

0.925484-08 0.7525EtO7 -0.5349Ei-07 0.9789EtO8 0.92 13EtO8

** BEADIKG ** I=IKSIDE C=CEI\TER O=OUTSIDE

SX SY SZ SXY SYZ SXZ

I -0.1910E+07 0.233 1EW8 -0.2280E+08 0.2246EiQ7 0.3118E+o(i -0.2187EtOG

c o.OO0 O.OO0 O.OO0 O.OO0 O.OO0 O.OO0

0 0.1910EtO7 -0 .23 lE+O8 0.2280EtO8 -0.2246EM7 -0.3 l18EtO6 0.2 187E+O6

s1 s2 s3 SIAT SEQV

I 0.255oE+o8 -0.2O91E.CO7 -0.2280E+O8 0.483OEi.08 0.4 197Et08

c o.OO0 0 .Ooo 0 .OO0 O.OO0 O.OO0

0 0.2280EtO8 0.2O91EtO7 -0.255OE+O8 0.48Wi-O8 0.4197Ei-08

*+ IIE!WE PLUS BEh’DIh’C ** I=IISIDE C=CEKl’ER MTSIDE

- 31 -

SX SY sz SXY SYZ SXZ

I 0.5503Ei-07 0.2011EW8 0.6971Ei-08 0.3594EM7 0.9773EtO6 0.1343Ei-07

C 0.7413EtO7 -0.520hEM7 0.925OEi-08 0.1349Ei-07 0.6655E+o6 0.1562EtO7

0 0.9324Ei-07 -0.305lEi-08 0.1153Ei-09 -0.8966Em 0.3537EiQ6 0.1780Ei-07

s1 s2 s3 SIhT SEQV

I 0.6976Ei-08 0.2O91Ei-08 0.4648Ei-07 0.651lEM8 0.5869Ei-08

C 0.92548408 0.7525EM7 -0.5349Ei-07 0.9789EW 0.92 13Ei-08

0 0.1153Ei-09 0.9314EM7 -0.3054Ei-08 0.1459EW 0.1306E+09

** PEAK ** I=IKSIDE c=cmm WWTSIDE

sx SY si! SXY SYZ SXZ

I -0.2859Ei-07 -0.5197Ei-07 -0.2343Ei-07 -0.2 14 1EM7 0.6453Ei-07 0.2236EM7

C 0,167 1Ei-07 0.2 128EM7 0.2259EW7 0.5569Em -0.3060Ei-07 -0.9876Ei-06

0 -0.3824Ei-07 -0.3314EM7 -0.6692Et07 -0.8683EM5 0.5786Ei-07 0.1714Ei-07

s1 s2 s3 SIhT a\' I 0,287lEtO7 -0.1796Ei-07 -0.1147Ei-08 0.1435Ei-08 0.l267EM8

C 0.5563Ei-07 0.1397EM7 -0.9032EtO6 0. 6466EM7 0.5677Ei-07

0 0.12 13EM7 -0.3739EM7 -0.1130Ei-08 0.1252Em 0.1092EM8

** TOTAL ** I=Ih'SIDE C=CEh'TER O=OUTSIDE

SX SY SZ SKY SYZ SXZ

I 0,2644EM7 0.1491E08 0.6736EM8 0.1454EM7 Q .7430Ei-07 0.3579Ei-07

C 0.9084Ei-07 -0.3076Ei-07 0.9476Ei-08 0.1906Et07 -0.2394Ei-07 0,5739E+06

0 0.54998+07 -0.3383Ei-08 0.1086E+09 -0.9835E4-06 0.6140Ei-07 0.3494Et07

s1 s2 s3 SIAT mi' mlr I 0.6861EM8 0.1395E4-08 0.2354Ei-07 0.6625EM8 0.6128Ei-08 O.OO0

C 0.9482E+O8 0.9375Ei-07 -0.3429Ei-07 0.9825EM8 0.9252Ei-08

0 0.1090EtO9 0.5417Ei-07 -0.3412EtO8 0.1431EW 0.128OEW9 O.OO0

- 32 -

n := 7 number of nodes on concerned SCL

a :=

0.25) integration factors -1 -1 1 1

-0.25 7 7 0 6 7

5.98

7.88

6.92

10.3

8.01

pa:=(0.5 1 1 1 1 1 0 . 5 )

Case .- Sxx ( x E6)

a:=

1.36

0.647

-0.683 membrane := - paba bending := -1 64p.a)

n - 1 n - 1 -1.26

-2.28

pa-a 6 4 P - 4 membrane := - bending := -1 - n - 1 n - 1

membrane = ( 7.1933 ) bending = ( -1.795 )

Case:Syy ( x E7)

-33-

Case : Szz ( x E7)

a :=

7.64 8.46

9.36 10.5 10.7

Case: Sxy

' 1.45 2.10 3.85 1.05

-0.04 16 0.506

\ -0.984

a :=

paaa membrane := -

n - 1

membrane = ( 9.2467 )

( x E61

pa-a membrane := -

n - 1

Case : Syz ( x E6)

a :=

' 7.43 ' 3.42

-2.68

-3.1 1 -2.1 1 2.26 6.14 ,

membrane = ( 1.2829 )

pa.a membrane := -

n - 1

membrane = ( 0.7608 )

64p.a) bending := -1 - n - 1

bending = ( -2.4 )

6 - ( P 4 bending := - 1 n - 1

bending = ( 1.7884 )

64P.d bending := -1 +

n - 1

bending = ( 0.6142 )

- 34 -

Case .- Szx ( x E61

a :=

I 0.196 I -1.02 0.952

pa-a 64p.a) membrane := - bending := -1 - n - 1 n - 1

I t::: J membrane = ( 1.4272 ) bending = ( -0.1968 )

I

For membrane comDonent

ma :=

7.193 - lo6 1.2829- 1 O6 1.4272.1 O6

1.2829. lo6 -0.5268. lo7

1.4272. lo6 7.61. lo5 9.2467. lo7

7.61 - lo5

v := eigenvalgma)

max := v3 - v1

max = 9.79 x 10 7

For bendinp comDonent

ba :=

-0.1795.1 O7 1.7884. lo6 1.9683-10’

1.7884*106 2.7487. lo7 6.14. lo5 1.9683.10’ 6.14 lo5 -2.4 10 7

v := eigenvalgba)

rnax := v2 - v3

-5.403 x lo6

( 9.25 107

(-1.903 x lo6

(-2.401 x lo7

7 max= 5.161 x 10

- 35 -

For membrane olus bending

a. At outside

mba := ma + ba

I 5.398 x lo6 3.071 x lo6 1.624 x lo6 3.071 x lo6 2.222 x lo7 1.375 x lo6 1.624 x lo6 1.375 x lo6 6.847 x lo7

v := eigenvalqmba)

max := v3 - vl

max = 6.373 x 10 7

b. At inside

mba := ma - ba

4.826~ lo6

[ 6.855~ 1:l v = 2.27~ 10

1 8.988 x lo6 -5.055 x lo5 1.23 x lo6 -5.055 x lo5 -3.276 x lo7 1.47 x lo5

1.23 x lo6 1.47 x lo5 1.165 x lo8

-3.276~ lo7 v := eigenvalgmba)

max := v3 -.VI

max= 1.492 x 10 8

-36-

I

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.

Report No.

Sponsoring Org.

Report No. Standard Report No. INIS Subject Code

I I KAERLflX-2057/2002 I

Publication Place Taejeon Publisher KAERI Publication Year

Page 36 Ill. & Tab. Yes Size

An Effective Method for the Linearization of I Title /Subtitle

2002

A4

Nodal Stress Components to Apply ASME Criteria

Project Manager and

Department Tae-Wan Kim (Advanced Reactor System Development)

Classified

Researcher and ~~ -7

Open ( o ) restricted( ) Report Type Technical Report - Class Document

~~ ~

Suhn Choi. Keun-Bae Park, Moon-Hee Chang

Subject Keywords Linearization of Stress, Sub-structuring Method, I-DEAS, ANSYS

Sponsoring org. I I Contract~o. I Abstract 1

The code of ASME Sec. III prescribes the general rules upon the design of a NSSS (nuclea

steam supply system). The code provides further flexibility to the design of the nuclear structures b]

introducing a design by analysis concept. But it still preserves the conservatisms in design works b

imposing strict failure mechanism and controlling material properties in use. A designer should prove thc

integrity of a structure under consideration by comparing the stress intensity, which was driven from thl

linearization of stress at concerning section, with the prescribed one. The recent development ii

computing system has enabled the commercial finite element programs to be a prevailing way tl