Nf N'rNsLIrL … · behind-armor data penetrator performance V5 Vr curve 2M. ARFAcr ifr.ie ......

Post on 10-Nov-2020

1 views 0 download

Transcript of Nf N'rNsLIrL … · behind-armor data penetrator performance V5 Vr curve 2M. ARFAcr ifr.ie ......

Nf

N'rNsLIrL

UINCLASSIFIE~DSECURITY CLASSIFICATION OF THIS PAGE (Wliw Dstota Etarod _________________

REPORT DOCUMENTATION PAGE BE NSTRUCPLTINFORM1. REPONT NUMBER a.GV CE5ION NO. 3. RECIPIENT'S CATALOG NUMBER

TECHNICALJ REPOR ARBRL..TR- 2 2 _______________

A-ILTAJ5. TY

VJE -TERMINAL BALLISTICS OF ,aRTAIN 65 GRAM LONG Final~ T,OD PENETRATCT IPACTING TELRMOR.L~ __

I. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(C

John P.bert

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASKUS Army Ballistic Research Laboratory AE NTNIBR

ATTN: DRDAR-BLTAberdeen Proving Ground, MD 21005 RDT&E 16

1iI CONTROLLING OFFICE NAME AND ADDRESSUS Army Armament Research & Development Command y~US Army Ballistic Research Laboratory VR FAEATTN: DRDAR-BLfberdeen Proving CGund- MD 2100S 101____________

14. MOIQA Pifons hrow Contfrolling Offeg) I5. SECORITY :.LASS. (of this t~otf)

~, I UNCLASSIFIED15sa. OECLASSIFICATION/DOWNGKAOING

106. DISTRIBUTION STATEMENT (of thie Ropon) r m f

Approved f 1:e reiesse;.. dis.t..,btbiA "._mt

17. DISTRIBUTION STATEMENT (of the obethct entaad in Block 20, ITf rent fromfRaven)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on teerms# side iftoco.ear end Identify by block numtber)

Automatic Cannon Technology (ACT)4behind-armor datapenetrator performance

V5 Vr curve

2M. ARFAcr ifr.ie om , svam N naa..7and Idautity by block "''~w' (1 rs)This report presents a comprehensive documentation of experimental data generatefor the ACT (Automatic Cannon Technology) Program (behind-armor data for longrod penetrators, in the 20-40=w size). An adequate kinetic energy penetrator

4 performance data base for long rod penetrators of various designs has beenestpblished. In addition, for some of the rounds, behind-target debris hasbeen analyzed to supply a partial basis for debris characterization. A

FOUM """ 1 EDITIO* or IP

SECU~ryr~isfrCAT~kb IfdS XE(Who" Veto In ad)

-it

TABLE OF CONTENTS

Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 9

II. RESULTS AND COMMENTS . . . . . . . . . . . . .

III. FUTURE PLANS . . . . . . . . . . . . . . . . . . . . . 14

APPENDIX A. BASIC RAW DATA . .. . . 15

APPENDIX B. DERIVED Vs, Vr CURVES ...... 33

APPENDIX C. FRAGMENT DATA .............. 57

APPENDIX D. PENETRATION SKETCHES FOR ACT 19 . . . . . 79

APPENDIX E. PREDICTED CURVES ............. 91 I

DISTRIBUTION LIST. . . .. 97

II

,A A..

~ -of

LIST OF ILLUSTRAT:ONS

Figure Page

1. Nominal Penetrator Characteristics ........... 10

2. Steel with High Inclusion Rate ...... . . . . . 13

i g~-1. Vs Vr Curve and D,-a for ACT 1.•.. . . . . 35

B-2. V, Vr Curve and Data for ACT 2 36........... 36B-3. V, Vr Curve and Data for ACT 3 .... . .3.7.. . 37

B-4. Vs, Vr Curve and Data for ACT 4 .. .. . .. . 38

B-5. Vs Vr Curve and Data for ACT 5 39

B-6. V sV rCurve and Data for ACT 6 .. . . . . . 40

B-7. V, Vr Curve and Data for ACT 7 ............. 41"

B-8. Vs Vr Curve and Data for ACT 8 ............. 38 4

B-9. V , Vr Curve and Data for ACT 9 ... .. 43

B-10. Vo, Vr Curve and Data for ACT 0 . .. .. . ..... 44

s r

B-11. V, V Curve and Data for ACT 71 . ... ... * 45 AB-12. Vs Vr Curve and Data for ACT 12 . . .. .. 46

B-13. V, V Curve and Data for ACT 13 . . . . . . . . . 47

B-14. Vs, Vr Curve and Data for ACT 10 .. . ........ . 48s r

B-1. Vs' Vr Curve and Data for ACT 14 . . . * . o * * *

B-15. V V Curve and Data for ACT 1 . . . . . . . . . l . 46

s r

B-16. Vs, V Curve and Data for ACT 13 . . . . . . . . . . .

s r

B-14. Vs, Vr Curve and Data for ACT 14 .. .. .. ... 48 5

B-i7. V V Curve and Data for ACT 15 . . . . . . . . . . . .B-18. V V r Creand Data for ACT 16 . . . . . . . . . . .. .

B-19 V Vr Curve an50afrAC 9 ....

B-20. V s V rCurve and Data for ACT 171 . . . . . . . . . 0 5

B-21. Vs, Vr Curve and Data for ACT 3.1 . . . . . . . . . . . .

54

8-0 uv n aafr C .

LIST OF ILLUSTRATIONS (Cont)

Figure Page

B-22. Vs, V Curve and Data for ACT 3.2 . . ....... . 56

5 rC-I. Coordinate Systea Depicting Angles X and t . . . * . . . 59

D-1. Sketch for Round 264 ............ . . 81

0-2. Sketch for Round 263 . . . ..... . . 82

D-3. Sketch fur Round 262 . . . . . . . .... 83

D-4. Sketch for Round 261 . . .. ...... . . . • 84

D-S. Sketch for Round 265 . . .. .. . . .. , . 85

D-6. Sketch for Round 260 .... . . . . . ( a . 86

D-7. Sketch for Round 259 . . .0 0 0 0 0. 0 . . . 87

D-8. Sketch for Round 258 ..... * • . .% . • # ... 6. 88

D-9. Photograph of Sectioned Targets and Residual

E-1. Predicted Vs, Vr Curve for ACT 16 .. . . . . . . 93

E-2. Predicted Vs, V Curve for ACT 17 .. .. . . . . . . 94

E-3. Predicted Vs, Vr Curve for ACT 18 ........ . *.95

E-4. Predicted V V Curve for ACT 19 ... ........ 96S

'I 6

'p

--- * -W W$1

LIST OF TABLES

Ta I e Page

Y.Ballistic Limit Velocities and Series Characteristics *.12

1. INTRODUCTION

The purpose of this report is to present a comprehensive documentationof experimental data generated in a small scale firing program withinthe ACT Project*. Chief objectives were:

# to assure an adequate kinetic energy penetrator performance database for rarious long rod peutetrator designs and

e to describe behind-target debris - mass, trajectory, speed and

type of individual fragments - associated with some rounds andto thereby supply a partial basis for debris characterization.

Targets used in the firing program were single pfate rolled homo-geneous armor (RHA) measuring 15.24 x 30.48cm for normal impact shotsand 15.24 x 45.72cm for oblique incidence with thicknesses rangingfrom 1.91 to 5.08cm. Penetrators were rods (right circular cylinderswith hemispherical noses) having length to diameter (L/D) ratios of5, 10 and 20. The predominant penetrator composition was of monolithic:AISI-S7 tool steel of finished hardness R 55 but other designs and

other materials were used to some extent; c.f. Figure 1 for penetratorcharacteristics. Impact obliquities were 00, 450 and 600.

In large part, the essence of this report is confined to the fiveappendices; indeed, our most compelling purpose is to disseminate,for the first time in anywhere near complete form, data that thisprogram has been sporadically yielding over several years.

Basic raw data from the shots is provided in Appendix A and ispartitioned, according to penetrator/target situation. into 23 serieslabelled ACT 1 through ACT 20 and ACT '.1, ACT 3.1 and ACT v.2.Twenty-two of these series (all but ACT 3.2, in which there is onlyone round with an acceptable level of yaw) were considered suitablefor determination of Vs, V curves and limit velocities. DerivedVs, tr curves for these 22 cases aze given in Appendix B. A summary

of processed behind-target fragmentation data for selected rounds issupplied in Appendix C. In Appendix D we attempt, in a sequence ofrough sketches, to illustrate the pre-impact and residual penetratorsin perspective with an appropriate target plate section for eachround of ACT 19. Appendix E provides (for the later set of shots)for a comparison between derived V5 , Vr curves and a predictive

model that has been formulated for dealing with long rod penetrators.

* ~eT "Autunatic Cannon Technology" project of which theeffort of concern here was but a srrall part.

9

,Q u

V

" . CI I"N

o So

LL MI 5'If A

~~In

(?

101

U!

I ! ,11 II

- o.. _.._I__

This program has unfolded in three phases invoiving distinctly

different time periods, different range personnel and practices, and

different project managers; such diversity has regrettably and inescapablybeen adverse to an orderly, coherent, productive effort. It is, forexample, exceedingly difficult now to adjudge the quality of datagenerated early in the program, to interpret cryptic notes on old datasheets, or retrieve misplaced information. The case for standardization

in data organization and in testing is clear.

II. RESULTS AND COMMENTS

The experimental setup and multiple flash x-ray system used torecord ballistic performance data are described in BRL TechnicalNote lt34. A sunmmary of ballistic limits and geometries for thevarious test series is given in Table I. Minutiae are to be foundin Appendices A-E. In perusing the data, the following remarksshould be kept in mind:

a. The parameters a, p, and V of Table I are derived from the

"good" data of the series. By a "good" round is meant a shot forwh~ich total initial penetrator yaw does not exceed 2.5so .

b. fhe penetrators in ACT I through ACT 15 (including ACT 1.1,

ACT 3. ,and ACT 3.2) were of monolithic AISI-S7 tool steel havingfinished hardness of R 55. The steel for ACT 16 through ACT 20 was

also of finished hardness R 55 and would have been AISI-S7 but forcthe inadvertent lack of molybdenum as an alloying agent.

c. ACT 16 and ACT 19 employed monolithic steel penetzators;ACT 17 penetrators were of two-piece steel (steel cap on stevl :tem);and, in ACT 18 and ACT 20, the penetrators were steel (R 55) withtungsten alloy caps (R 42). c

c1. The steel used in rounds 231 through 268 'ACT 16 through

ACT 4") was VIMVAP* processed. The difference made by this changein pr~cessing is especially noticeable when comparing data foThe sL el used in some of the penetrators oZ ACT 1i had a very highinclusio rate (Figure 2), ccntributing no doubt to the large scatterin the cata for thfs series. ACT 19 is a recreation of ACT 11 (withthe slig '. difference in penetrator material noted previously aldthe diff "-nt processing).

lGrabarek, C. and Herr, L., "X-Ray Multi-Flash System for Measurement 0fProjectile .'" ,rforrnnce at the Target", BRL TN 1, 634, September 1966(AD 377657).

IM a

1-1

* --

rw N a, w m n tw

.H

"4- P-0 4 0N NN4 - "q4NNI '4 -4 14

'e C r- 4" R 4-\0qCNC . D'4-N w e A ,V \. u -)L \

uC

0 14 N1 t; 1 4 \ :40 N O4 ~4 414 L.4 4 ~4 4 14 4 41 '4 z

> M P 1.41 12

N*1~_ .

V11-

,. ,lA N

... , .

0

Figure 2. Steel with High Inclusion Rate

13J

e. Finally, we note that the V s V r tests from ACT 16 on are

significantly more economical of shots - there were no shots lost (in

the sense of being unsuitable for deriving a Vs , Vr curve) due to

excessive yaw. Indeed, in rounds 231 through 268, only one round (234)proved unsuitable.

III. FUTURE PLANS

Further exploitation of the data generated in the ACT program

continues. A report on penetrator residual mass variation with impact

energy and target geometry may be anticipated.

ACKNOWLEDGMENT

The author acknowledges the contributions of Messrs.

Antonio J. Ricchiazzi and Peter G. Morfogenis, the previous principal

investigators for the terminal ballistics portion of the ACT Program.

Thanks are also due to Messrs. John Koval and Dale Smith under whose

supervision the experimental data was generated in the Terminal

Ballistics Division Small Caliber Ranges. Messrs. Frank Dubois,

John Cullum and Robert Schnick, among others, assisted in the reduction

of the data.

14

!-

VF

APPENDIX A

BASIC RAW DATA

isi

15 1A4

4

APPENDIX A: BASIC RAW DATA

Notation:

# Round number

M Penetrator mass, grams

L Penetrator length, centimeters

D Penetrator diameter, centimeters7

T Target thickness, centimeters

H Target hardness, BHN

cc Vertical penetrator yaw at impact, degrees

Horizontal penetrator yaw at impact, degrees

6 Total penetrator yaw at impact, degrees

Vs Striking penetrator velocity (speed), meters/second

V Residual penetrator velocity (speed), meters/secondr

M Recovered residual penetrator mass, gramsrM Estimated (from radiographs) residual penetrator mass, gramsr

Mass loss of target plate, grams

Cone angle of residual penetrator path, degrees

Phase angle of residual penetrator path, degrees

Indicates that item is not applicable; e.g., cone angle, etc.if Vr = 0

A Indicates that item is applicable but unknown

Key to Remarks:

1 - Total yaw exceeds 2 1/2, round not used in V£ determination

2 - Perforation but V not obtainable, round not used in Vdetermination

3 - Non-perforation, small bulge in rear target surface

4 - Non-perforation, large bulge in rear target surface

5 Non-perforation, rear target surface fractured

6 Rod slightly bent at launch

7 - Perforation, penetrator severely shattered

8 - Penetrator made from "dirty material"

16

ii 1**1 v '

GB4

wi C ,II

4D a a

a 40 cl

SW (0* (0) * (U ') 4

4-4 *

1 0 (a to LA!U to W-

end 00 f R~r- m q 0 *

W c0 co GO txW 4- C .1 4 R 0

17. O4

%~ (!

..................................................

*: *w q ~ S I cu

en

x

C--54)a n

'0 *ISO o.~ 0 ( ~ . 0 a>

IA WU) ** *aas

.4 4 44 . - 4 I m~.3h,.

II') M

m'~ ~ g~ ~ I *18

U1

ca I *l t I f Ur naaI "4) 4 VV U UVE

r- a in m '6It ~4 V ) .W 4 4 4. < 4 C 44 < U 40 h -4

# I I I I S 8 6 4 ( * ( g ( g S I <

0- F- -0 4- U -W W

II <

I SC.) 0 0 0 0 a 0 0 0 EU 0 0 ( 0 so 0 0 v

'4 .r-

I lI I ,, ,,-

U It 4t 10 m m ) w o w '. w -w w m m m - ,-0 0 " "Im"I .-. EU U) in to ato &A EU EU EU th In .-t ED U EU w>4 1 4 .4 .4 -4 -- f -4 ~-4 -4 -. 4 -- * -4 -4 4 -4 .4 .4 4 -4 .

ccE to a (U i'u U c.- Go co tmo ul U)(U f- wU -U to nLf

05049. A EU 4 4O U) .w U) EU .m a EU w m 0 v v

Q.4 -4M M M

am %a m , 0 4) cu 0 0W w en c U t m EU 4,- 0 c e

9 W C! (U .I" 0 .

U; U) toW U) in M ' 4)i U) 01*n ) - V n W O EU In ) W - V" Vi

C) SF .D 0 0 E 0 4 0 0, 40 C 4 0 EU Q ' .4 0(Do

f- r- t D g m f - o co a - f - a - C- '

a o to a to ( a a a w a t fa ( w (a A 0 t M a

SE' w w o 9 (a w (at% (z EU4A 4 ( U o (D w EU EU CA w9 w t

u th r 00 CYOW VI SO 0 C m h It W C) CCo rU

SJ. m m1 MU fn MU CUE U C U MU EU U (U M CU M

S........................................................................

SW U U)to U U) U) U U) U) ) U) U) ) U) U) ) to U) o t

6.4 . OS .4 0 0 0 0 0 0 0 0 0 0

I C

( a

I' 0 0 0

am 4' ! 4 a1 4' ( 0 4' I '4

.c- f o o - '

I I I c" Ih UI I i

I o ai at fu *W 4p 0 * r A

C" " (" f" I I I ) ip to C el -

w~~~~ w w 04 0www

> 4 .4 - . . . . .

, I V y M v -0 00

ao ma W M w w ' 2A m 111 w 0U

00M 1 P1 -D r 0 0 a 0 c) C3. on o' ('

-4 . 4 -4 -4 4 4 4 .4

v 0 n V14 lw0 -In I ~(0 w4 4 '(1 P 4L U W 1 (Z 0 D ca 0 0

ao fu~ P1W pi W r- )) m0 P1 lAat:I4 C' (U P .4 " .' (n

ae a4 a a a a.

IC 0 W in in r I~ P1 1 20W

C?0

r al V m LD ". 4 ' Ob. lIV Pl It in, ni "d n 4 ' €" i

V: Iqr r- l LB #A ao to V0 r A I,

ICI " 1 1 4

I C) a a t- Co I*

(a I o CU qm am In LA t o 4 f o f

10 V a C fn 0 0 C- 03 0- fu to fn 0

Q 0 o D .o a Co • 0 D C) > o> C3 C- C

v 't ' v .4

a'-nU. L

a 0 0 -

IV , -4 to(Ii ('P P

-~~ ~ 00 0 0

or- -4 N sw 0 C)> - wD tu n) th

j 4 V I V U w t

-,t 0 C'M (u X

A-i M M p 0 0 m w (. to4

ca004 CN r.1 4n 0- 0 1

Ao A4 ko to to to( ) .4 4 ) E ( m

at w () w w

w - o -t , c ,. w

wt (D oo r- r- c-000 r- t- w P c r-40

- - -

In CU (

-W .4.44re! 41so

11 41 ha .4 .

4 qu -0 V 4." '48 4 W M

ob4I en V taV)I M 48.- In58 8 w sUI4.1 r) r-

-416 -4 -4 ~

Is C; C; 0 43 W;O 4C C

C3O 4 0 '10 ao 0 0'. a- 0

9 948 C! I80-. Co1 r- 43 0u 4 4.14 a

43 ke CA 4A fa wn4 4a 4 IS 0 41 to r, th

-4 4 - 4 .4- 4 .4 I. 4 . 4 .

M 1 4w .4 4 . 4 .4 6.D .4 -4

SOP 0 : To I'- 048 64 4.0-

I0t! 0 a 44 8 04 - 0 4

00 SD ID W CA 6) 4 w w ( a t

GO Owm r- .0 U) v'. * .6 ' 0 4'A nP PIM

maim 48 . 0 . 041464.. 0 4

U) U

s~~~'~ C~C n 1 ) 0 0 01R4<< <1 r- < 9 w V - 4 ' 4 ) 4. 4'c 4A 4 4-

< I

SI

1 C3)0 0 0000 000 vn ) w 4 CoC. 0 CU 4

.I vn 4- 4. IVW Wt n i A a C d a o -

I Oo -t q r- CO 0 0.14 4 4.4 (U M 1t') LA W) C8 U el) 48fu ) M ' 4') M IV v' w' w 4 It v ' IT v' 4' 4 n wn I-

>.4.14 .4 -. 4 .4 4 .. 4 4 -. 4 *

to W0 a; ' 48 1; D; 0 8 0 4 c r- i ' ' 448 t) ' U

I"g M1 M04 0- M 0 4 M U 0 0 M 0 0 0 W 4 0 0 M

1 r- CAU I'- le C0 4 ft. 0.4000a 0 -4 0 0 0 Cc- 0 0

im - m a' w 0 0 (U 0 0 (U wI 0 0 m 0 m w~ w8 -

0 as8 8 84 4 4 4 MS a) CS mS 4) ') 4m m w m 00 "m 14 4 48 4 wm om mm mmM 908T np

.44 4 IV 4'c) * co c o 04" 0 0 0 0 0C a'sO r 4' 0il

IW In In In In I n In In U) I U) I n In In Cot m* LA) Uh In t

-4 . 4 . 4 .- 4 -4 .-4 14 4 -4 -1 .4 -4 -4 t 4

30 0 0 0 0 0 0 0 C 0 'C 0 a M* 0 0 0

V4 0

4' 0 48 P; r- kA CU 3' ( C ' - co in

II

M~ as C ), el 0 fu r- w to t LA L a d

I X cm P V (f ft r- w ca R t- to < in I

1%I I < < I < < < < <

< CI') W 1 40 U) Q r- to CU C> U) 6- ..*i ca .4- f l 0 4<

10~~ U) 40 CU CU M C 0 nL A Q* C.) e4 m4 .n4) c f 1 ) CV n L

I4 I m w m I 0 C0 0 w m w m m m 0 C5 C a m

*0 0 0 000a 0 a0 0~ ao Qi ac 0 .4 c, 0

$41 U! 1C EU 1 (*l t 1 1 1 l

fnC C U) el CU .4W -4 torOU U n f U u

604~~ 0 0 0 , 0 0~ 0w 0 a-U 0 Qo D a

.40- C) -U 4 -U -4.4 4

1) U) - ) C 1 0 f- - O ) 0 C5 0 ' CU G 0(J f ') W M'MI

.O If) 0! a!) IS 0 0 0 l 9 n) a! C 0 0 C)

-W0 01 0j 0 04( U 000000ru0 0 V 0 03 0 0 0 t, (UI 1; ru cu 4 M .na 4. c . 4. . n? -. -. -. -4 - .- .- .C

C4--- IA C0 .111 1, - --

!~

I • •r I •A

I A

• I *l .lt n . -<8"8s 6 ,

•I OD I r- C

saturn, 0 C I~r " (

8IA M IWcu ITO w ~ -4 (U Wl

s. I - ,t ('- Oh I-P U) U>1 m4 m r- x8 41 ' ) 000

80 I 00 0) It 8-> I el CR o 4 ." 1 -4 -4 CU C)

-4 -4 .4 8 -> -4 .4 -4

.4

I C # 0 Oh 0 S I U) U!

11 C;1C 0 0

Is* 0 0 r- 0 " .In 4') C>a•8 000Wo o 60 .- .4 C)..

88I I I 6 I I I 8

80 000 ¢0 5 _ .4- .0 .,0,0

,ay q ') 84 4

0! 0! C') 8 C?) C'to 0 III

800 00

o 00

5.A

w w r'- h

I......................................

cdIn

ft~~ S 4 4 4 I4 4

14 .4

o 0 a) MOW i0 .Q 00 o e

x -4 1( 0gC-M C - 0 so

> 0t

t- go -f C 4 4 % ) p4 el CIV 4 C *

ca 00 40 a* 40 a U 0 C) c) o (U 0 C)C3

r ~ ~ ~ ~ Y 07 5' eC 9 I IC 1 li P!C 0!

M r) LA $A 40 #A C9 W .e (

4x 0 1

>5. -4 r 4 j

EM 01 W 0 0 M 4A0 M 60 b Q LA LA C

CY20 0 0 0 0 0 .4 4 ) a00 ? 0! 0 0

SW EU W LA r- 0 0 W W LA M M W 0 0 L -

I 0

I C4I 4 4 -,- IS

II O W .4 (U 0 0- -

4 Ii I 4 4 I 4 4 ,-I 25 . . .

*F U<

son w w 0 U LA (N t .4 0

_,II* I 4 I o • • • • . • -

- I, 0 '4 0 C-, LI 0. (J)

- S ml' U ' . . . I-. . . . . ..) O

2-4gm I I 4I-mlm

41I A w w m 1A- w - oT

II I ""* I.

"0 00000. 0 M go 000 0 l

'A c , FV -W 40 4 a M,- . I . . .0.

"Iq -4 -4 14 -4 . 4 4

30 00 0 00 . .. I -t 4

I 4 1A-I alW W 18 m (Pmm I A wr

0It 1A4 1A4 1AO 1A 1A 1A(04181A U) I

I. 4.10 0 0) 0 0 0 0 1 .4 * . 4 -4 . -4 '

oa

en C" ( w th 0000

L0 (1) -0 18 mU) mrI(U .0 (I 4 ) 1' -, ~ P 1 303tI fu tl c ru u ru fu m N w

14 4 4 4 44 ~ '4 4 4 V 4 4 4 4TF

18181.01818W 11 8 1 8 8 8 8 8 8 8

~) S

do4~ . V -4 f" qqI toM V .4 CA

< f,

*f fu.0 1 '4 w ~ s C

* 1 .4 obC IUWV 0 c

I LA~ ut in vA 4 i . ) 0

A* .4 (0 as C .4 40 CU i

:7 I ob1.U (U 413.4 - I 0 . 0; UA ;F) ; 00 4fu. fiM cu m .4u4 (U (U ( ) cq

(004' n 00 w $404 0 )U)CILI O ('40 ru an V co C> ) CI4 0

> 44 14 *> I4 '. -4 .4 - 4

I4 to- * at I r, F, 1A 1A IS 04a o - r- 0bI ob V 1w to0 1 C% (a iO a L WI4a'- cu

> I. (o UU (U 4WO 0 .. .4( u m (U (U (40

(U U C1> 0 (U .4 10 - cU ) C. ) C3 n - 4 a * C) 'o

0 00 . '040 00 C3 C.0 C) 000.4 C

30 0 .3 0 (0 .4 C5 ( (U 0 F) ) 0 C)AC

C)~~t C) n C. o 0 0 0 0 0I In fn I, en en I

I(U (U 00 (U (U m 9.4 .a (U 4.b CA ob Ob4 ± )

.4 -04 dI) 0 0 0 0 0 0 44

(I f Ic IL (N r- f' 00 (u I C) 0

... It 4t040 10 -0 4. V!i cm00

SF4 F) -I mF 54) (to) F F ) C-. F r

w T v4 v) vn I' U~' 2f LA vs W~ CU LINF) 4 U FI n eaniI f scu M -Iw c m os 06506u500u i u u

;-4

ItI 48I I 1 '-1

.4M M M I C44 cu mu-

It!1 It!UIIf

m 08 laW #A 'C* -4 -4 7-4 cu I

m e) L O go ml ON, (1 40 th c

1 -4 > '.

48 f, C 0 CX t% C) '1 4' Ccw(A a W .44 4- 'W 0 10 )

> f mI m v v W n 08 OluM00V1 Ln: IWO OW

> 1 .4. >8 > I

w. w r- 0w III S- c0 n-4. 4I IWI m U w 4

C; C; C; C; C; C; 1n C'. g. 48 :

aO 0 0 0 0 0 - a In C) 0 ca 10 0; C U ';

Z3 0 0 00 CI)GC 1) 0; C00. 0

40 v w4 a toI

In C'S G I In m

G~~~ln (U Ali 1. Al ( U ( gl A U4 '-4

9..- 94 C! 4. - 1 0 1000to Q- <> o 0a1A4 - %. 4 m4 w .14 0 i

~il') m CA 00 wb wJ wC' w - l 8 )

M~ M It in wt u I v r 0 1A

1, C!., 1

wU 1 Al w l III N ft nj CU (U I

LA I

nj 54" ra4.

I4 >

e-4 -4 * -4 .9.5 "

10 In) - n

o c') C., U

< 1 M In M P) I) m C4 Ei fu fuII M

I-U S -: -t -C0 * U -4 4

(U

54"4

' 1 0 0 m al '0h. (AU 44

If) U) OAF In okww 5'

I

tU m 4 ' ) U) CU C' CWEi0 I-

MW wU El A 4D W U WW (ai U (

L, u% in m F)) mW ko (

rx-,

-L ov ti ;

,.r

APPENDIX B

DERIVED Vs, Vr CURVES

33

APPENDIX B: DERIVED Vs, V CURVESs r

This section is comprised of the Vs, Vr curves derived from the

experimental data of Appendix A. The standard form used to representdependence of residual velocity on striking velocity is

with the constraints, p > 1 and 0 < a <1.

Values for the limit velocity, V., and the other parameters, a and

p, are derived via a non-linear least squares algorithm which extractsan optimal adaptation of the form to the data. For an elaboration onthe above form and related methodology, see BRL Report 18522. Thereis available at the Terminal Ballistics Division of the BRL a programin BASIC, called "Impact", which contains the algorithm and providesgraphic capability; we have used this program to derive parameters forour various data sets and to generate the following figures. Vs, V

s rdata corresponding to rounds for which the total yaw of the penetratorat impact exceeded 2 1/20 was excluded from this analysis. In eachfigure "S" denotes the root mean square error associated with the fitof form to data.

I ,I

2Lonbert, J. P. and Jonas, G. H., "Towards Standardization in Terminal

Ballistic Testing: Velocity Representation", BRL Report 1852,

January 1976 (AD A021389).

34

I,

t '1

I. U2

N U

0ma. IL j u,

Lii

03LA

c.-

ini

W In Im L1

LZJ4L

N WIF mN

rr

INI"4 Ixz C3

7M 'I

0L -i in

'I

- Lit Lit

141* U 1.. J U.a

'-I IU.:

L13 cr

.7.z i-'

L fl x

I-,I

Lii Z

6AAtuI

CS/W) AJID01,A~ 114nC IJS3hj

377

m C _ UI

1U

I 0mN

a0. ..I Lu

382

S:611

IB

Ix

0a C

z0m

Li

Lfl

Li

.

39

InI

0 hn

N. 1 7m xV

> 4

0 L

Ln

S/W) 41 c -,,

40

We --. -

3. In ,z Z

>-.

-Nn

~X

~o. ~j

doH

9211zI

Im (

>i

ID wa Lij

LD

41

m n

0t lIi A Itm a. -j Lfl

> ''

02u

CL.

LA.

U, '>*Co

421

In m mllf

M L j L 1

I L

u -

al

IN~

Ul =3

Lin

UU.

- m m r- w mi m m' r'. w

43

IL.A~

LIn

daa

a c

mam

ImI

IxI4>

Lfl D

In

114 -

rI-.

If 0 -11

In

i Ii

53 53 3 121353 5353 C)

LD

[CK - --

Ln -

fyi LA

N

Ul

r~ N

Um

La -M%

Lfl r - ItAA

NI

46

In

r

iti

n%

IVi

Ldi

2

Ln

II

IU.: #L%

%% l

0 ~cc

0UPI

N U U LOD N

IA.48

u-nm

*N LA

UK U

a !

IL

od0K s

Ul

*>

w

(51W) AJJ)U13A INWOMS~

49

LIF

inn

II

A L

(5W iwos

sot

e

S S-Nil .1 1 "lF< ...

N

Ln4[r

L iLh

La

a:

Lu

->

> m

w 3to LiIQ au

r.4

( SIN) A I )013A iufnaiS3N L

Ul

II!Lo-rn -

LnUl

I- 4

wz.r- L

e-

in

>

c a

LaI

(- ) Al D073A 78na , s"

* 5"_5e O -

- L

U!

MIVI A.

CL~

cr.1

InIm 0'J

L13 53 1

(5W I 03AiniI

$1

N iM LAl

'I

w

La N N

(S/W AID13A unai

54I

LAv

-j- imLA14

tnI

Ln

In

LD(S/W AllMMA onam

LnLNL Ll

M -n

4

U 2

InIc

L D n

(S/W) AJ.Da13A I1flI13 'A

56

APPENDIX C

FRAGMENT DATA

57

APPENDIX C: FRAGMENT DATA

Summary of processed 3 behind-target fragmentation data for 29selected rounds.

Notation

Type - P: penetrator fragment- T: target fragment (spall particle)

Cone - Cone angle of fragment trajectory: the acute anglebetween the fragment path and the initial penetratorpath. c.f., Figure C-i.

Phase - Phase angle of fragment trajectory: the angle, between0 and 360 degrees and measured clockwise as perceivedfrom the target hole, between the vertical upward directionand the projection of the fragment path on a plane behindthe target orthogonal to the initial penetrator path.c.f., Figure C-i.

3Arbuokle, A. L., Herr., E. L. and Ricchiazzi, A. J., "A ComputerizedMethod of Obtaining Behind-the-Target Data from Orthogonal FlashRadiographs" BRL Memorandum Report 2264, January 1973 (AD 908362L).

.Jo

ID Icl0

zoz

CDwzzo

LL 0w

LU I-

w cwzz

LCA.

w

01 C

A

o 0 0 a m

60,L 0 4 0 - u

~~~~~~ a- I- 16 - -* -8 -e 8 - 8- I---..e

0~C C; 0 0-04

61

I

II

-. 4 .4

IL 0.-

-. 1I40 "*

62

I

II

1* APmt 1 * *

- 1t

633

( -

-4

Ib ., 9total 0 0 L

I6

o*, ; : ;a CC

rI 'I aIE W1

fl p

Iqabig I v R so

6S 4

LLI

I -4

~~~~I Na r I-~ 1-i -I -rf---- QIIS-I s

*4 .4 1

-0 W4- 1.- .0 1. .4 a0 . 4 . V

oI 0aoooC 0000-

.4 W4

04 1.

vow I

0 IV- t

!ill' a OR ONit

85

! I~~~~1-. I- - 0- -, -. I .- I 1- I- w - 0}- 11- - I- I- I - I-

63

- ,-

l3 I ; ; - ,; ilI I lli ,lI U I t A

* i67!

-L

II

q4 W q

I I

ft a V w o a a w t- ft a a r- ft V

a i msA

68

.4 V .4 .

CD .4 . . 0

Ef I raS4 I I a I

. .4 .4 -4 -0

M -4

69

.44 U.4 .4 -000 .4

PIS a .4 I MI

EWI .4 .4 .4 4WI . . 4 .4.04. 4

-r a

! - 8- I I - g - *. -* .~ * - ..- - * *€ 9- 9- 9 - .-" 9)- 9-

a I LS i,.- !0 * *I..--. . - II- I . 0* - g I )-0.- *-. . I * . 9 - ,. -

p 1 0 0-0 4Ic C

72

- -a

I5

7S

Jig; I

it a w t r-

4..4 . 4 aFO OO O@ S

74 -

r •VIC0 .943C f~

0 0 0 0 0 i 1f 0 1

o o o 11o ,,0C C .4U 0b- ,.; ,,. ..,

R I"

F --f r e - .10 a aa. 0 m m

11;I ° "5

-I - - o :. -'

b

II-

L -a-

fi" I A a A A I R

a.'!1 :1

i

0 C C C; V; 4 1 t

4 V a

i")

I .- M ~I - ~ eK CM E1 or' W' 4' 4. t- - - r -

C0 0 0 0

7?

i ±1<, .

IIII

IIVI

~ ~;

~J* ~ 4

V

APPENDIX D

PENETRATION SKETCHES FOR ACT 19

F 79

APPENDIX D: PENETRATION SKETCHES FOR ACT 19

We attempt, in a sequence of rough sketches, to illustrate the pre-impact and residual penetrator (and/or "plug") and target plate sectionfor rounds 258 through 265 (which constitute ACT 19). Figures are(roughly) 3/4 of actual size and the attempt is to convey approximatepositioning and shape. In each sketch the initial penetrator position(with respect to the target plate) is representative of the situation50 psec before impact and (except for Round 264) the residual penetratorsuggests the situation 50 psec after perforation is complete (i.e.,after the tail of the penetrator clears the rear target surface).

We recall that ACT 19 involves L/D of 10 monolithic steel penetratorsimpacting 1" RHA at 600 obliquity. Mr is used to denote recovered

residual penetrator mass. Ordering of the sketches reflects an increas-ing sequence of striking velocities.

Following the sketches is a photograph of the sectioned targetplates for these shots together with a representative originalpenetrator and recovered residual penetrators. In the photograph A isused to denote mass loss of the target plate. In a few cases there isa small discrepancy between the velocities given in the sketches andthose on the photograph - those in the sketches are derived from alater, presumably more careful "reading" of the radiographs and areregarded as the official values. The sequence of rounds in the photo-graph is as follows:

top row, left to right - Rounds 264, 263, 262, 261

bottom row, left to right- Rounds 265, 260, 259, 258

Remarks: Each plate shows an indention on the upper front surface -

these "Lips" were formed by pusher plates impacting the targets andare not consequent to penetrator/target interaction.

80

044

0%

4) 4

C.4 U4

U)81

0

N 00 N

It

>N

'N 10

N A4

N 44

In

824

rnW0'

ro

V-4

,4. NO Aif.

83,4

oaA

II ix

40

84'.

II II(

' '0

'N'°• .|

f 0

m4.

U|

N g5

gU

U U/ " N

'Nm

'N' Na _-

'Ni

I:*-- 'N

86 Ls

0 I I I !

too~4 '0

-4 -4

$44J

'N

NN

LL..

NN

iI

N _

87

N

RM,101" I, I Io

cccc

-444

-I

II I

IiI

884

88 i

N. $4

It

co

0"-4

4ts

0

bo

89.

-1

-" i _ _ _ _ _ _ _ _ • ..-4 I

- .-+-=-

APPENDIX E

PREDICTED CURVES

91

APPENDIX E: PREDICTED CURVES

A predictive scheme has been formulated for obtaining limit velocityand Vs, Vr curve estimates for situations involving long rod penetrators

and single plate RHA targets ; pertinent equations are given below.For the final phase of this firing program, these equations were usedto generate initial estimates of limit velocity (and of the full Vs, V

relationship). Figures on the following pages provide for graphiccomparison between the Vs, Vr curve predicted for the nominal situation

and that derived from the experimental data for each of ACTS 16, 17, 18and 19. In each case the data and predicted curve are graphed, and the

derived curve, which also appears in Appendix B, is plotted as adashed curve.

The predictive scheme is specified by:

0, if 0 < V s < VX

Vr

a(VsP-V£PIP if V > V£

where Ma= M+WR73 p 2 + z13,

an Vi f=z D3

75 .z sec e, f(z) = z+e-z - .

D - " z, p = 7 8,4

and where L, D, T are in centimeters, M in grams, V in m/s.

'LambI')P, " '3iu~ V~~t Pe!t!V' &&-l for Long Rod

Prt2trators ', to apecw.

.VA

4) .

444

4104 c 4 at. T4U

U * .0

-~ In

4J4

4.J 4) -

0 U >0 Lfn 0

Cd ifA 0 d )

*r-I u

Ii II i II H

CD d)

(SW 4)03 1nI3

93-4'

4Iu

.P4 C;4.4

4)

U U?

UU

4 94

Ck~v-0

1-1 -4

C) C)

.r) 0) v

*d 0 4 tI>i

In

uj jU, -

0; C) $4 0

0

(S)W $403AINI

irk

~CL(n 44

44)

d) 00-4) 00 m *44

-4

U)

*0044

4J4.k

to Un0 1

4)

.H

96

DISTRIBUTION LIST

No. of No. ofCopies Organization Copies Organization

12 Commander 2 CommanderDefense Documentation Center US Army Missile ResearchATTN: DDC-TCA and Development CommandCameron Station ATTN: DRDMI-RAlexandria, VA 22314 DRDMI-RBL

Redstone Arsenal, AL 35809I Director

Defense Nuclear Agency 1 Comman er

ATTN: MAJ Spangler US Ar y Tank AutomotiveArlington, VA 22209 Res arch & Development Cmd

AM N DRDTA-RWLI Director Warr n, MI 48090

Defense Advanced ResearchProjects Agency I Co mander

ATTN: Tech Info US Army Mobility Equipment1400 Wilson Boulevard esearch & Development CmdArlington, VA 22209 A N: DRDME-WC

F rt Belvoir, VA 22060I Commander

US Azmy Materiel Development 1 dommanderand Readiness Command VS Army Armament Materiel

ATTN: DRCDMD-ST Readiness Command5001 Eisenhower Avenue ATTN: DRSAR-LEP-L, Tech LibAlexandria, VA 22333 "Rock Island, iL 61299

I Commander 2 CommanderUS Army Aviation Research US Army Armament Research

and Development Command and Development CommandATTN: DRSAV-E ATTN: DRDAR-TSS (2 cys)12th and Spruce Streets Dover, NJ 07801St. Louis, MO 63166

4 Commander

Director US Army Armament ResearchUS Army Air Mobility Research and Development Command

and Development Laboratory A'rN: Mr. V. GuadagnoAmes Research Center Mr. R. DavittMoffett Field, CA 94035 B. Knutelsky

G. Demitrak2 Commander Dover, NJ 07801

US Army Electronics CommandATTN: DRSEL-HL-CT, S.Crossman I Commander

DRSEL-RD US Army Watervliet ArsenalFort Monmouth, NJ 07703 ATTN: SARWV-POD-SE, P.Vottis

Watervliet, NY 12189

97

DISTRIBUTION LIST

No. of No. ofCopies Organization Copies Organization

Commander 3 CommanderUS Army Harry Diamond Labs Naval Air Systems CommandATTN: DRXDO-TI ATFN: AIR-6042800 Powder Mill Road Washington, DC 20360Adelphi, MD 20783

3 Commander5 Commander Naval Ordnance Systems Command

US Army Materials and ATTN: ORD-9132Mechanics Research Center Washington, DC 20360

ATTN: DRXMR-T, Mr. J. BluhmDRXMR-T, Dr. D.Roylance 2 CommanderDRXMR-T, Dr. A.F.Wilde Naval Air Development Center,DRXMR-T, Dr. J.Mescall JohnsvilleDRXMR-ATL Warminster, PA 18974

Watertown, MA 021721 Commander

Director Naval Missile CenterUS Army TRADOC Systems Point Mugu, CA 93041

Analysis ActivityATTN: ATAA-SL, Tech Lib 1 Commander & DirectorWite Sands Missile Range David W. Taylor Naval ShipNM 88002 Research & Development Ctr

Bethesda, MD 20084Deputy Assistant Secretary

of the Army (R&D) 1 CommanderDepartment of the Army Naval Surface Weapons CenterWashington, DC 20310 ATTN: Code TX, Dr. W.G.Soper

Dahlgren, VA 224481 HQDA (DAMA-ARP)

Washington, DC 20310 2 CommanderNaval Surface Weapons Center

1 HQDA (DAMA-MS) Silver Spring, MD 20910Washington, DC 20310

3 CommanderCommander Naval Weapons CenterUS Army Research Office ATTN: Code 4057ATTN: Dr. E. Saibel Code 4011, Dr.E.LundstromP. 0. Box 12211 Code 3813, Mr.M.BackmanResearch Triangle Park China Lake, CA 93555NC 27709

4 CommanderChief of Naval Research Naval Research LaboratoryATTN: Code ONR 439 ATTN: Mr. W. J. Ferguson

N. Perrone Mr. J. BakerDr. H. PuseyWashi noton. DC 20360

Washington, DC 20375

98

V

DISTRIBUTION LIST

No. of No. of

Cpe Organization Cpe raiaif

I Superintendent 1 DirectorNaval Postgraduate School Lawrence Livermore LaboratoryATN: Dir of Lib ATTN: Dr.R.H. Toland, L-424

Monterey, CA 93940 P.O0. Box 808

2 ADTC/DLJW (MAJ D. Matuska, Livermore, CA 94550LTC J. Osborn) IAeronautical Research Assoc.Eglin AFB, FL 32542 of Princeton, Inc.

50 Washington RoadIAFFDL (FDT) Princeton, NJ 08540Wright-Patterson AFB, OH 45433

2 Aerospace Corporation IAFML (Dr. T. Nicholas) ATTN: Mr. L. RubinWright-Patterson AFB, OH 45433 Mr. L. G. King

2350 E. El Segundo Blvd3 ASD (YH/EX, John Rievley; El Segundo, CA 90009XROT, Gerald Bennett;ENFTV, Matt Kolleck) 1 Boeing Aerospace CompanyWright-Patterson AFB, OH 45433 AT3N: Mr. R. G. Blaisdell

(M.S. 40-25)

Headquarters ( , ,4 -5

I HedquatersSeattle, WA 98124

National Aeronautics and SSpace Administration I Dupont Experimental LabsWashington, DC 20546 ATTN: Mr. J, Lupton

Wilmington, DE 198014 DirectorNational Aeronautics and I Effects Technology Inc.Space Administration 5383 Hollister AvenueLangley Research Center P. 0. Box 30400Langley Station Santa Barbara CA 93105Hampton, VA 23365

,

Director Falcon R&DATTN: Mr. R. MillerNational Aeronautics and 1225 S. Huron StreetSpace Administration Denver, CO 80223Manned Spacecraft CenterATTN: Lib

2 Falcon R&DHouston, TX 77058 Thor Facility

Director ATTN: Mr. D. Malick

Mr. J. WilsonJet Propulsion Laboratory 696 Fairmount AvenueATTN: Lib (TD)ATN ib(D

Baltimore, MD 212044800 Oak Grove DrivePasadena, CA 91103 j

99

E1

DISTRIBUTION LIST

No. of No. ofCopies Organization Copies Organization

I FMC Corporation I Pacific Technical Corp.Ordnance Engineering Div ATTN: Dr. F. K. FeldmannSan Jose, CA 95114 460 Ward Drive

Santa Barbara, CA 93105I General Electric Company

Armament Systems Dept 1 Phi]co-Ford CorporationBurlington, VT 05401 Capistrano Test Facility

San Juan Capistrano, CA 92675PresidentGeneral Research Corporation 3 Physics International CompanyATTN: Lib ATTN: Dr. D. OrphalMcLean, VA 22101 Dr. E. T. Moore

Dr. M. Chawla1 Goodyear Aerospace Corp 2700 Merced Street

1210 Massillon Road San Leandro, CA 94577Akron, OH 44315

3 Sandia Laboratori3sH. P. White Laboratory ATTN: Dr. W. HerrmannBel Air, MD 21014 Dr. L. Bertholf

Dr. J. W. Nunziato3 Honeywell, Inc. Albuquerque, NM 87115

Government 4 AerospaceProducts Division 1 Science Applications, Inc.

ATTN: Mr. J. Blackburn 101 Continental Blvd, Suite 310Dr. G. Johnson El Segundo, CA 90245Mr. R. Simpson

600 Second Street, NE 1 Science Applications, Inc.Hopkins, MN 55343 ATTN: G. Burghart

201 W. Dyer Rd (Unit B)Lockheed Corporation Santa Ana, CA 92707ATTN: Dr. C. E. VivianDepartment 8114 2 Systems, Science & Software,Sunnyvale, CA 94087 Inc.

A TN: Dr. R. SeagwickI Materials Research Lab., Inc. Ms. L. HIageman

I Science Road P. 0. Box 1620Glenwood, IL 60427 La Jolla, CA 92038

McDonnell-Douglas 1 US Steel Corporation'tstronautics Company Research Center

ATTN: Mail Station 2]-2 125 Jamison LaneDr. J. Wall Monroeville, PA 15146

5301 Bolsa AvenueHuntington Beach, CA 92647

io

[,

DISTRIBUTION LIST

No. of No. ofoies Organization Copies Organization

Drexel University 1 University of DaytonDept of Mechanical Engineering Univ. of Dayton Research InstATTN: Dr. P. C. Chou AT1N: Mr. H. F. Swift32nd and Chestnut Streets Dayton, OH 45405Pniladelphia, PA 19104

2 University of DelawareNew Mexico Institute of Dept of Mechanical Engineering

Mining and Technology ATTN: Prof. J. VinsonTerra Group Dean I. GreenfieldSocorro, NM 87801 Newark, DE 19711

Forrestal Research Center 2 University of DenverAeronautical Engineering Lab Denver Research InstitutePrinceton University ATTN: Mr. R. F. RechtATTN: Dr. A. Eringen Mr. T. W. IpsonPrinceton, NJ 08540 2390 S. University Boulevard

Denver, CO 802103 Southwest Research Institute

Dept of Mechanical Sciences 2 University of FloridaATTN: Dr. U. Lindholm Dept of Engineering Science

Dr. W. Baker and MechanicsDr. P. H. Francis ATTN: Dr. C. A. Sciammarella

8500 Culebra Road Dr. L. MalvernSan Antonio, TX 78228 Gainesville, FL 32601

Stanford Research InstitutePoulter Laboratory Aberdeen Proving Ground333 Ravenswood AvenueMenlo Park, CA 94025 Marine Corps Ln Ofc

Dir, USAMSAA3 University of Arizona Cdr, USATECOM

Civil Engineering Department ATTN: Mr. W. PlessATTN: Dr. D. A. DaDeppj Mr. S. Keithley

Dr. R. RichardDr. R. C. Neff

Tucson, AZ 85721

4 University of CaliforniaLos Alamos Scientific LabATTN: Dr. R. Karpp

Dr. J. DienesDr. L. GermainDr. B. Germain

P. 0. Box 808Livermore, CA 94550

101 j

49