New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

Post on 05-Feb-2016

54 views 0 download

Tags:

description

New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing. Anna N. Kim, Tor A. Ramstad. The Classic DPCM Structure. +. Uniform Quanitzer. -. +. Linear Predictor. Rate Distortion Performance of DPCM. Previous Work. Farvardin & Modistino (1985) - PowerPoint PPT Presentation

Transcript of New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

1

New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

Anna N. Kim, Tor A. Ramstad

2

The Classic DPCM Structure

Uniform Quanitzer

Linear Predictor

+

+

)(nx

)(ˆ nx

)(ne )(neq

)(nz

-

3

Rate Distortion Performance of DPCM

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

DPCMR(D)

4

Previous Work

Farvardin & Modistino (1985) Øien & Ramstad (2001) Guleryuz & Orchard (2001)

5

Øien & Ramstad: DPCM and The Wiener Filter

UQ EC

P

P1

1WED+

+

)(nx )(ˆ nx

-

jeP )(

2)(

)()(

qxx

xx

S

SW

6

Øien & Ramstad: Simulation Results

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

DPCMR(D)Ø&R

7

Guleryuz & Orchard: System Structure

UQ EC

C

P1

1L2ED+

+

)(nx )(ˆ nx

1-P L1

jeP )(

8

Guleryuz & Orchard: Simulation Results

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

DPCMR(D)Ø&R O&M

9

Rate-Distortion Theory

Discrete Time Discrete Amplitude Source

Discrete Time Continuous Amplitude Source

Source With Memory

10

The Water-filling Principle

11

Rate-Distortion Bound of AR(1) Process

deS

Rj

xx

2log2

1,0max

2

1)(

deSD j

xx

,min2

1)(

12

Optimal Mapping

H +

)(nx )(ˆ nx

)(n

13

Approximations & Assumptions

No correlation between quantizer input and quantization noise

No correlation between samples of quantizer output

Quantization noise variance Entropy of quantizer output as bit rate

12

22 q

14

Proposed Codec (a)

UQ EC

P

P1

1WED+

+

)(nx )(ˆ nx

-

jeP )(

2)(

)()(

qxx

xx

S

SW

L L

15

Simulation Results: (a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

L+W R(D)DPCM

16

Proposed Codec (b)

UQ EC

P

P1

1WED+

+

)(nx )(ˆ nx

-

2)(

)()(

qxx

xx

S

SW

r rL L

jreP )(

17

Simulation Results: (b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

L+W R(D) DPCM Multi

18

Discussions

Source Spectral Shaping Bit Rate Reduction Prediction Coefficient Effects of Wiener Filter Multi-Rate Processing

19

Shaping of Source Signal Spectra

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Low-passed Source Quantization Noise Level

20

Bit Rate Reduction

Bit rate after down-sampling:

Additional bits for maintaining distortion level

Total bit rate reduction

RateSampingDownSampleCoded

Bits

SampleSource

Bits 1Ra :

Ra - Rb

Rb

21

The Linear Predictor

In classic DPCM

With down-sampling rate r

)()1()( nznxnx

)(~)()( nzrnxnx r

22

Effect of Prediction Coefficient

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.260.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Normalised Frequency

Rat

e in

Bits

/Sam

ple

Down Sampling Rate: 4

Modified Prediction CoefficientOriginal Prediction Coefficient

23

Effects of Wiener Filter

0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

0.5

1

1.5

2

2.5

3

Normalised Frequency

Rat

e in

Bits

/Sam

ple

Down Sampling Rate: 2

With Wiener Filter Without Wiener Filter

24

Multi-Rate Processing

Integer Sampling Rate Alteration

Fractional Sampling Rate Alteration

Hd(z) M Hu(z)L

L H(z) M

25

Conclusions

Rate Distortion Motivated Set-up Simple Configuration Superior Performance Robust System

26

Future Work

Non-monotonically decreasing spectrum Non-linear mapping Application in low bit rate image coding

27

28

29

30

PSD of The Source Signal (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

15

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

31

PSD of the Low Passed Source (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

32

PSD of Downsampled Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-20

-15

-10

-5

0

5

10

15

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

33

PSD of Quantizer Input (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

34

PSD of Decoded Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

15

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Decoded Signal Quantization Noise

35

PSD of Upsampled Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Upsampled Signal Quantization Noise

36

PSD of Interpolated Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Interpolated SignalQuantization Noise

37

PSD of Wiener Filtered Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Wiener Filtered SignalWiener Filtered Noise Interpolated Signal Interpolated Noise

38

PSD of The Source Signal (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

15

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

39

PSD of the Low Passed Source (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

40

PSD of Quantizer Input (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-14

-12

-10

-8

-6

-4

-2

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

41

PSD of Lowpassed Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Lowpassed SignalLowpassed Noise

42

PSD of Wiener Filtered Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Wiener Filtered SignalLowpassed Signal Lowpassed Noise Wiener Filtered Noise

43

PSD of Decoded Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

15

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Decoded Signal Quantization Noise