Modeling the Land-Atmosphere Hydrologic Cycle and its Coupling through River Flow

Post on 18-Jan-2016

34 views 0 download

description

Modeling the Land-Atmosphere Hydrologic Cycle and its Coupling through River Flow. William J. Gutowski, Jr. Dept. Geological & Atmospheric Sciences Iowa State University. START Temperate East Asia Regional Center(February 2000). … with much help from:. - PowerPoint PPT Presentation

Transcript of Modeling the Land-Atmosphere Hydrologic Cycle and its Coupling through River Flow

Modeling the Land-Modeling the Land-Atmosphere Hydrologic Cycle Atmosphere Hydrologic Cycle

and its and its Coupling through River FlowCoupling through River Flow

William J. Gutowski, Jr.William J. Gutowski, Jr.Dept. Geological & Atmospheric SciencesDept. Geological & Atmospheric Sciences

Iowa State UniversityIowa State University

START Temperate East Asia Regional Center (February 2000)

… … with much help from:with much help from:

Charles J. VörösmartyCharles J. Vörösmarty22, Mark Person, Mark Person33,,

Zekai ÖtlesZekai Ötles11, Balazs Fekete, Balazs Fekete22

and Jennifer Yorkand Jennifer York33

1 1 - ISU- ISU2 2 - Univ. New Hampshire- Univ. New Hampshire3 3 - Univ. Minnesota- Univ. Minnesota

START Temperate East Asia Regional Center (February 2000)

OutlineOutline

CLASPCLASP

- motivation - motivation

- calibration/validation- calibration/validation

START Temperate East Asia Regional Center (February 2000)

OutlineOutline

CLASPCLASP

- motivation - motivation

- calibration/validation- calibration/validation

Water cycle coupling through river flowWater cycle coupling through river flow

START Temperate East Asia Regional Center (February 2000)

OutlineOutline

CLASPCLASP

- motivation - motivation

- calibration/validation- calibration/validation

Water cycle coupling through river flowWater cycle coupling through river flow

Further directionsFurther directions

START Temperate East Asia Regional Center (February 2000)

Hydrologic Cycle - Modeling IssuesHydrologic Cycle - Modeling Issues

Time scale mismatchTime scale mismatch• land: land: slow slow • atmosphere: atmosphere: fast fast

Spatial scale mismatchSpatial scale mismatch• land: land: smallsmall• atmosphere: atmosphere: largelarge

PBL

ATMOS

SVAT

Export throughStreamflow

SW/GW

External Forcing

CLASP

CCoupled LLand - AAtmosphere SSimulation PProgram

PBL

ATMOS

SVAT

Export throughStreamflow

SW/GW

External Forcing

CLASP

ATMOS:ATMOS:• single columnsingle column• computedcomputed

vertical processesvertical processes

• specified lateral specified lateral forcingforcing

PBL

ATMOS

SVAT

Export throughStreamflow

SW/GW

External Forcing

CLASP

SVAT & SVAT & SW/GW:SW/GW:• spatially spatially resolvedresolved

• vertical couplingvertical coupling

by soil/veg by soil/veg processesprocesses

• lateral couplinglateral coupling by river networkby river network

1600 Cells1600 Cells

ApplicationApplication

KansasKansas

ApplicationApplication

FIFE - Konza Prairie, KansasFIFE - Konza Prairie, Kansas 1987-19891987-1989

ApplicationApplication

FIFE - Konza Prairie, KansasFIFE - Konza Prairie, Kansas (from Oak Ridge DAAC FIFE page)

PBL

ATMOS

SVAT

Export throughStreamflow

SW/GW

External Forcing

CLASP

Boundary Boundary Conditions:Conditions:

NCEP NGM analysesNCEP NGM analyses 9 Years (1985-93)9 Years (1985-93)

0

5

10

15

20

0 90 180 270 360

950 hPa Specific HumidityTopeka vs. NGM

Topeka

NGM

Day of 1987

Calibration/ValidationCalibration/Validation

Observations: Betts and Ball (1998)Observations: Betts and Ball (1998)

(from Oak Ridge DAAC FIFE page)

Calibration/ValidationCalibration/Validation

1987: Calibration1987: Calibration

1988 & 1989: Validation1988 & 1989: Validation

Calibration/ValidationCalibration/Validation

1987: Calibration1987: Calibration

1988 & 1989: Validation1988 & 1989: Validation

Surface: GrasslandSurface: Grassland

Calibration/ValidationCalibration/Validation

1987: Calibration1987: Calibration

1988 & 1989: Validation1988 & 1989: Validation

Surface: GrasslandSurface: Grassland

Primary Targets: Primary Targets:

– Surface EvapotranspirationSurface Evapotranspiration

– Precipitation Precipitation

Calibration/Validation: AdjustmentsCalibration/Validation: Adjustments

PrecipitationPrecipitation

– Effective RH Effective RH (93.5%)(93.5%)

– Convective precip.Convective precip.

Calibration/Validation: AdjustmentsCalibration/Validation: Adjustments

PrecipitationPrecipitation

– Effective RH (93.5%)Effective RH (93.5%)

– Convective precip.Convective precip.

Soil MoistureSoil Moisture

– Root depth Root depth (1.42 m)(1.42 m)

– Water fractionWater fraction

Calibration/Validation: AdjustmentsCalibration/Validation: Adjustments

PrecipitationPrecipitation

– Effective RH (93.5%)Effective RH (93.5%)

– Convective precip.Convective precip.

Soil MoistureSoil Moisture

– Root depth (1.42 m)Root depth (1.42 m)

– Water fractionWater fraction

“ “Green-up”Green-up”

Ccan∝GLEAF

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Gleaf - Original

Gleaf

T [˚C]

Ccan∝GLEAF

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Gleaf - Original

Gleaf - Calibrated

Gleaf

T [˚C]

0

50

100

150

200

0 60 120 180 240 300 360

Surface Latent Heat Flux

FIFE+sdevFIFE-sdevCLASP

Day of 1987

BIAS = - 3 ; SDEV = 5 [W-m-2]

-80

-60

-40

-20

0

20

120 150 180 210 240 270 300 330 360

Precipitation

FIFECLASP

Day of 1987

OBS = 2.5 ; BIAS = +0.04 ; SDEV = 7.7 [mm-d-1]

0

20

40

60

80

100

150 180 210 240 270 300

Cloud Cover

FIFECLASP

Day of 1987

BIAS = +0.3 % ; SDEV = 10 %

0

20

40

60

80

100

150 180 210 240 270 300

Cloud Cover

FIFECLASP

Day of 1987

BIAS = +0.3 % ; SDEV = 10 %

-50

0

50

100

150

0 60 120 180 240 300 360

Surface Sensible Heat Flux

FIFE+sdev

FIFE-sdev

CLASP

Day of 1987

BIAS = + 1 ; SDEV = 6 [W-m-2]

0

50

100

150

200

250

300

350

0 60 120 180 240 300 360

Incident Solar Radiation

FIFE+sdevFIFE-sdevCLASP

Day of 1987

BIAS = - 4; SDEV = 21 [W-m-2]

0

50

100

150

200

250

300

350

0 60 120 180 240 300 360

Incident Solar Radiation

FIFE+sdevFIFE-sdevCLASP

Day of 1987

BIAS = - 4; SDEV = 21 [W-m-2]

200

250

300

350

400

450

0 60 120 180 240 300 360

Downward Infrared Flux

FIFE+sdev

FIFE-sdev

Day of 1987

CLASP

BIAS = + 3 ; SDEV = 9 [W-m-2]

-100

-50

0

50

100

0 60 120 180 240 300 360

Soil Heat Flux

FIFE+sdevFIFE-sdevCLASP

Day of 1987

BIAS = + 6 ; SDEV = 7 [W-m-2]

0

50

100

150

200

120 150 180 210 240

Latent Heat Flux

FIFE+sdevFIFE-sdevCLASP

Day of 1988

(a)

2100

50

100

150

200

Day of 1989

(b)

VALIDATION

BIAS = - 48 , SDEV = 25 BIAS = + 6 , SDEV = 23 [W-m-2]

-80

-60

-40

-20

0

20

0 60 120 180 240 300 360

Precipitation

FIFE

CLASP

Day of 1988

VALIDATION

OBS = 1.4 ; BIAS = - 0.2 ; SDEV = 5.4 [mm-d-1]

-80

-60

-40

-20

0

20

0 60 120 180 240 300 360

Precipitation

FIFE

CLASP

Day of 1989

VALIDATION

OBS = 2.5 ; BIAS = - 1.0; SDEV = 8.0 [mm-d-1]

-50

0

50

100

150

120 150 180 210 240

Sensible Heat Flux

FIFE+sdevFIFE-sdevCLASP

Day of 1988

(a)

210-50

0

50

100

150

Day of 1989

(b)

VALIDATION

BIAS = + 33 , SDEV = 23 BIAS = - 13 , SDEV = 22 [W-m-2]

150

200

250

300

350

400

120 150 180 210 240

Incident Solar Radiation

FIFE+sdevFIFE-sdevCLASP

Day of 1988

(a)

210

Day of 1989

(b)

VALIDATION

BIAS = + 22 , SDEV = 18 BIAS = - 34 , SDEV = 41 [W-m-2]

200

250

300

350

400

450

0 60 120 180 240 300 360

Downward Infrared Flux

FIFE+sdevFIFE-sdevCLASP

Day of 1988

(a)

VALIDATION

BIAS = - 19; SDEV = 18 [W-m-2]

200

250

300

350

400

450

0 60 120 180 240 300 360

Downward Infrared Flux

FIFE+sdevFIFE-sdevCLASP

Day of 1989

(b)

VALIDATION

BIAS = - 13 ; SDEV = 7 [W-m-2]

OutlineOutline

CLASPCLASP

- motivation - motivation

- calibration/validation- calibration/validation

Water cycle coupling through river flowWater cycle coupling through river flow

Further directionsFurther directions

Water cycle coupling through river flowWater cycle coupling through river flow

Water cycle coupling through river flowWater cycle coupling through river flow

Water cycle coupling through river flowWater cycle coupling through river flow

Water cycle coupling through Water cycle coupling through

river flowriver flow

Configuration 1:Configuration 1:• Pure grasslandPure grassland• No river inflowNo river inflow

0

40

80

120

160

1985 1987 1989 1991 1993

Latent Heat Flux

ENCR (grass)

[W-m

-2]

Year

0

40

80

120

160

1985 1987 1989 1991 1993

Latent Heat Flux

ENCR (grass)E-NoE (grass)

[W-m

-2]

Year

QuickTime™ and aGIF decompressor

are needed to see this picture.

0

10

20

30

40

50

60

70

80

1985 1987 1989 1991 1993 1995

Discharge

ph.18-GR-NoE

Year

0

10

20

30

40

50

60

70

80

1985 1987 1989 1991 1993 1995

Discharge

ph.22-GR-ENCR

ph.18-GR-NoE

Year

0

2

4

6

8

10

12

14

16

0 90 180 270 360

Lyon Creek, Kansas - Climatology(Dec. 1953 - Sep. 1974)

DAY OF YEAR

Water cycle coupling through Water cycle coupling through

river flowriver flow

Configuration 2:Configuration 2:• Mixed forest/grassMixed forest/grass• No river inflowNo river inflow

0

40

80

120

160

1985 1987 1989 1991 1993

Latent Heat Flux

ENCR (for/gr)E-NoE (for/gr)

[W-m

-2]

Year

0

10

20

30

40

50

60

70

80

1985 1987 1989 1991 1993 1995

Discharge

ph.21-FG-Enc

ph.19-FG-NoE

Year

0

10

20

30

40

50

60

70

80

1985 1987 1989 1991 1993 1995

Discharge

ph.21-FG-Enc

ph.19-FG-NoE

Year

OutlineOutline

CLASPCLASP

- motivation - motivation

- calibration/validation- calibration/validation

Water cycle coupling through river flowWater cycle coupling through river flow

Further directionsFurther directions

START Temperate East Asia Regional Center (February 2000)

Further DevelopmentsFurther Developments

CLASP CLASP MODFLOW MODFLOW Jennifer York (U. Mn)Jennifer York (U. Mn)

START Temperate East Asia Regional Center (February 2000)

Further DevelopmentsFurther Developments

CLASP CLASP MODFLOW MODFLOW Jennifer York (U. Mn)Jennifer York (U. Mn)

CLASP + LSMCLASP + LSM Dave Flory (ISU)Dave Flory (ISU)

START Temperate East Asia Regional Center (February 2000)

BIAS = - 3 ; SDEV = 17 [W-m-2]

0

50

100

150

200

0 60 120 180 240 300 360

Surface Latent Heat Flux

FIFE+sdevFIFE-sdevCLASPLSM

Day of 1987

BIAS = - 6 ; SDEV = 3 [W-m-2]

-50

0

50

100

150

0 60 120 180 240 300 360

Surface Sensible Heat Flux

FIFE+sdevFIFE-sdevCLASPLSM

Day of 1987

Further DevelopmentsFurther Developments

CLASP CLASP MODFLOW MODFLOW Jennifer York (U. Mn)Jennifer York (U. Mn)

CLASP + LSMCLASP + LSM Dave Flory (ISU)Dave Flory (ISU)

Grass-Forest DistributionGrass-Forest Distribution Meredith Lips (ISU)Meredith Lips (ISU)

START Temperate East Asia Regional Center (February 2000)

Further DevelopmentsFurther Developments

Effect of Spatial Variability inEffect of Spatial Variability in

Sea-Surface TemperatureSea-Surface Temperature

(Mon. Weather Rev., 1998)(Mon. Weather Rev., 1998)

START Temperate East Asia Regional Center (February 2000)

0

100

200

300

0 60 120 180 240 300 360

Het.Hom.

FL

[W/m

2]

Day of Year

+ 47%

ConclusionsConclusions Credible calibration/validationCredible calibration/validation

• Hindered by model/driving data: vertical Hindered by model/driving data: vertical motion and precipitationmotion and precipitation

• Hindered by observations?Hindered by observations?

START Temperate East Asia Regional Center (February 2000)

ConclusionsConclusions Credible calibration/validationCredible calibration/validation

• Hindered by model/driving data: vertical Hindered by model/driving data: vertical motion and precipitationmotion and precipitation

• Hindered by observations?Hindered by observations?

Horizontal coupling of water cycle Horizontal coupling of water cycle by river flowby river flow

• More important during dry than wet episodesMore important during dry than wet episodes

• Can increase area-averaged ET by 50% in Can increase area-averaged ET by 50% in some summerssome summers

START Temperate East Asia Regional Center (February 2000)