Manastash Taneum Resilient Landscapes Project: Landscape … · 2016-09-27 · The...

Post on 13-Aug-2020

0 views 0 download

Transcript of Manastash Taneum Resilient Landscapes Project: Landscape … · 2016-09-27 · The...

1TheNatureConservancy,Seattle,WA,2WashingtonConservationScienceInstitute,Wenatchee,WA,3UniversityofWashington,Seattle,WA,4USForestServiceOkanogan‐WenatcheeNationalForest,WenatcheeWA,5USForestServicePacificNorthwestResearchStation,Wenatchee,WA

Manastash‐TaneumResilientLandscapesProject:LandscapeEvaluationsandPrescriptions

RyanHaugo1,WilliamGaines2,JamesBegley2,JamesRobertson1,DerekChurchill3,JamesDickinson4,ReeseLolley1,PaulHessburg5,

May2016

TableofContents1.Introduction1.1.TapashSustainableForestsCollaborative............................................................................................11.2.Manastash‐TaneumResilientLandscapeRestorationProjectBackground...........................31.3.Manastash‐TaneumResilientLandscapesRestorationProjectObjectives............................32.LandscapeEvaluationandApproach2.1WhyIntegratedTerrestrialandAquaticLandscapeEvaluations?..............................................52.2ForestandStreamInteractions..................................................................................................................52.3AquaticLandscapeEvaluationMethods.................................................................................................62.4TerrestrialEvaluationMethods.................................................................................................................83.LandscapeEvaluationsSummariesandLandscapePrescriptions3.1AquaticEvaluationSummaries...............................................................................................................133.2TerrestrialEvaluationSummaries.........................................................................................................183.3RestorationOpportunitiesSummary....................................................................................................234NorthForkTaneumSubwatershed4.1NorthForkTaneumAquaticEvaluationandPrescription..........................................................284.2NorthForkTaneumTerrestrialLandscapeEvaluation................................................................294.3NorthForkTaneumTerrestrialLandscapePrescription.............................................................315.TaneumSubwatershed5.1TaneumAquaticEvaluationandPrescription...................................................................................325.2TaneumTerrestrialLandscapeEvaluation........................................................................................335.3TaneumTerrestrialLandscapePrescription.....................................................................................346.NorthForkManastashSubwatershed6.1NorthForkManastashAquaticEvaluationandPrescription.....................................................366.2NorthForkManastashTerrestrialLandscapeEvaluation..........................................................366.3NorthForkManastashTerrestrialLandscapePrescription........................................................387.RobinsonCanyonSubwatershed7.1RobinsonCreekTerrestrialLandscapeEvaluation.........................................................................247.2RobinsonCreekTerrestrialLandscapePrescription.....................................................................408.MonitoringandAdaptiveManagement...................................................................................................409.References............................................................................................................................................................42

FiguresFigure1.Manatash‐Taneumprojectarealandownershipmap.............................................................2Figure2.Exampleterrestriallandscapeevaluationmetricsoutput................................................12Figure3.Roaddistributionandpotentialsteelheadhabitatmap...................................................15Figure4.Roaddensityandpotentialsteelheadhabitatmap..............................................................16

Figure5.Road–streamcrossingdensitymap...........................................................................................17Figure6.Vegetationcovertypesmap...........................................................................................................19Figure7.Vegetationstructuralstagesmap................................................................................................20Figure8.Currentnorthernspottedowlhabitatmap.............................................................................21Figure9.MoistureDeficitmap.........................................................................................................................22Figure10.Aquaticrestorationopportunityareasmap.........................................................................26Figure11.Terrestrialrestorationopportunityareasmap..................................................................27

TablesTable1.Manastash‐Taneumlandownershippersubwatershed.......................................................3Table2.Steelheadlimitingfactors...................................................................................................................6Table.3.Terrestirallandscapeevaluationphotointerpretationderivedmetrics.....................10Table4.Terrestriallandscapeevaluationspatialmetrics...................................................................11Table5.Road‐streaminteractionindicatorvariablespersubwatershed....................................14Table6.Currentandpotentialsteelheadhabitatandcurrentandprojectedstreamtemperaturespersubwatershed...................................................................................................................14Table7.Aquaticrestorationopportunityareas........................................................................................23Table8.Terrestrialrestorationopportunityareas.................................................................................25

AppendicesAppendixA:VegetationandforeststructureattributesAppendixB:CompleteterrestrialevaluationoutputpersubwatershedAppendixC:Completeterrestrialevaluationmaps

TapashManastash‐TaneumLandscapeEvaluationandPrescription 1

1. INTRODUCTION

1.1 TapashSustainableForestsCollaborativeTheeasternCascadesofWashingtonStateisanincrediblydiverseandcomplexecoregionthatsupportsabundantfishandwildlife,awiderangeofforestcommunities,andprovidesanarrayofcriticalecosystemservicesincludingwater,woodproducts,forageforgrazing,andawidevarietyofrecreationalopportunities.RangingfromthecrestoftheCascadesdowntotheshrubsteppeoftheColumbiaBasin,thevariabilityintheforestsandrangelandsoftheeastCascadesaredrivenbytheinterplayoftopography,precipitation,soils,anddisturbancessuchasfire,insects,flooding,andwind(Hessburgetal.1999,Stineetal.2014).SimilartoforestsacrosswesternNorthAmericaahistoryofwildfiresuppression,intensivetimberharvesting,andgrazingthroughoutthe20thcenturyhascausedwidespreaddegradationofforest,rangeland,andstreamhabitatsandincreasedtherisksofuncharacteristicallyseverewildfire(Hessburgetal.2000,Buntingetal.2002,Lehmkuhletal.2013,Hessburgetal.2015).Theresultingshiftsintreespeciescompositionandincreasesinforestdensityhaveresultedindecreasedresilienceofforeststodroughtandfireformanyoftheregionsforests,andthisoccursatatimewhenclimatechangeisprojectedtoincreasedroughtstressandwildfirerisks(Hessburgetal.2000,Haugoetal.2014,Littelletal.2010).Twentiethcenturyforestmanagementalsoledtothebuildingofextensiveforestroadnetworkswhichhavedramaticallyalteredwatershedhydrology,increasedsedimentdeliveryintostreams,reducedfloodplainfunctioning,andfragmentedaquatichabitats(Bissonetal.2003,Riemanetal.2010).Thesestressorsofaquatichabitatshaveandwillcontinuetobefurtherexacerbatedbytheincreasesinstreamtemperaturesanddecreasesinsnowpackasaresultofclimatechange(Mote2003;Mantuaetal.2009;Isaaketal.2010,2012).AcrosswesternNorthAmericaandwithintheeasternCascades,thechallengescurrentlyfacingourforestedecosystemsfrompastmanagementandfutureclimatechangehavepromptedawidescaleshiftinlandmanagementtofocuson“ecologicalrestoration”(Riemanetal.2010,Gainesetal.2012,USFS2013,Hessburgetal.2015).Ecologicalrestorationisdefinedas“theprocessofassistingtherecoveryofanecosystemthathasbeendegraded,damaged,ordestroyed”(SER2004).However,effortstoconserveandrestoretheecosystemsoftheeasternCascadesarefurthercomplicatedbyadiversepatchworkofprivate,state,tribal,andfederallandownerships,eachwithdifferentforestmanagementemphasesandobjectives.InresponsetothesechallengestheTapashSustainableForestCollaborative(http://www.tapash.org)wasofficiallyformedin2007throughaMemorandumofUnderstandingbetweenmajorlandownersintheeasternCascadesofsouth‐centralWashingtonState,includingtheUSForestService(USFS),YakamaNation(YN),WashingtonDepartmentofNaturalResources(WDNR),WashingtonDepartmentofFishandWildlife(WDFW),andTheNatureConservancy(TNC).TheTapashcollaborativeprovidesaframeworkforcooperationandcoordinationbetweenTapashpartnerstorestoreecosystems’resistanceandresiliencetoclimatechangeacross3millionacresintheeasternCascadesofsouth‐centralWashingtonState.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 2

“Toimprovetheecosystemhealthandnaturalfunctionsofthelandscapethroughactiverestorationprojectsbackedbybestscience,communityinputandadaptivemanagement”–TapashMissionStatement.Figure1.TapashSustainableForestCollaborative‐Manatash‐TaneumResilientLandscapeRestorationProjectHUC12subwatershedsandlandownershippatterns

TapashManastash‐TaneumLandscapeEvaluationandPrescription 3

1.2Manastash‐TaneumResilientLandscapeRestorationProjectBackgroundInthefallof2014,theTapashCollaborativelaunchedtheManastash‐TaneumResilientLandscapeRestorationProjectasaflagshipefforttodemonstratecross‐ownership,integratedterrestrialandaquaticlandscapescaleecosystemrestoration.TheUSFS,WDFW,WDNR,andTNCallhavesignificantownershipswithintheManastash‐Taneumprojectareawhichincludesfour6thfieldsubwatersheds(12CodeHUC)comprisingnearly80,000acres(Figure1,Table1).ThesesubwatershedswereselectedbytheTapashCollaborativebecausetheycontainavarietyofsignificantaquaticandterrestrialresourcesandconservationvaluesinadditiontothediverselandownership.Theseconservationvaluesinclude,butarenotlimitedto,habitatforfederallylistedsteelhead(Oncorhynchusmykiss;NMFS2008,YBFWRB2009),bulltrout(Salvelinusconfluentus;USFWS2015),andnorthernspottedowl(Strixoccidentaliscaurina;USFWS2011).Additionally,inrecentyearsthesesubwatershedshavereceivedsubstantialconservationinvestmentstoprotectformerindustrialtimberlands,restorestreamflowsforfishpassage,andreplenishin‐streamlargewoodtoenhanceaquatichabitatqualityandfloodplainfunctioning.Table1.Manatash‐TaneumOwnershipperHUC12subwatershed Ownership

Total USFS WDFW WDNR TNC Other*Subwatershed ac. ac. ac. ac. ac. ac.NorthForkTaneumCrk. 29,533 21,030 730 7,611 162TaneumCrk. 25,848 3,693 13,465 4,743 16NorthForkManastashCrk. 13,451 1,287 8,467 3,264 433RobinsonCrk. 35,179 11,036 2,713Total 78,650 26,010 33,698 10,720 7,627 595*Note:Asignificantamountofprivate,primarilynon‐forestedlandsintheTaneumCreekandRobinsonCreeksubwatershedswereexcludedfromtheprojectarea.1.3Manastash‐TaneumResilientLandscapesRestorationProjectObjectivesThroughaseriesofTapashlandmanagermeetingsin2015,theTapashCollaborativedevelopedthefollowingManastash‐Taneumprojectobjectives:

TheManastash‐TaneumResilientLandscapeRestorationProjectaimstorestoretheresiliencyofforestandaquaticecosystemsinordertocontinueprovidingcriticalfishandwildlifehabitatandecosystemservices(water,woodproducts,forageforgrazing,andawide‐arrayofrecreationalopportunities),whilereducingtheriskofcatastrophicfiretolocalcommunitiesinthefaceofawarmingclimate.WithintheManastash‐TaneumprojectareatheTapashCollaborativewilldeveloprestorationprojectsusingthebestavailablesciencethateffectivelyworkacrossownershipandmanagementboundariesandrespectthedifferingobjectivesofeachlandowner.Restorationprojectswillseektobalanceecologicalobjectiveswitheconomicviability,producecommercialtimberproductswherepossible,andmaintainadiversityofsustainablerecreationalopportunities.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 4

Aquaticrestorationprojectswillfocusonimprovingwatershedconditions,functions,andprocessesandrestoringthecomplexaquatichabitatsthatcontributetotherecoveryoffederallylistedfish.Specifically,thisincludesrestoringhabitatconnectivitybetweenheadwatertributaries,streamchannels,floodplains,wetlands,andriparianvegetationandreducingroadandstreaminteractionstoimproveaquatichabitatfunction,in‐streamflowandsedimentregimes,waterquality,andbiologicalfunctions(spawning,rearing,foraging,andmigration).Aquaticrestorationalsoincludesimprovingnaturalstreamchannelfloodplainaccesstorestorethetiming,variability,anddurationoffloodplaininundation.Terrestrialrestorationprojectswillfocusonrestoringpatternsofvegetationandwildlifehabitatsuccessionalpatchesandinherentfireanddisturbanceregimesfromthescaleofindividualpatches(1‐100’sofac.)tolocallandscapes(e.g.,subwatersheds,1,000’sto10,000’sofac.).Restorationofvegetationandwildlifehabitatpatternincludesreestablishingthenaturaldistributionofpatchsizes,treeclumpandgappatternswithinpatches,andafocusonretainingandpromotinglarge/oldtreesandpost‐disturbancelargesnagsanddownlogsacrossthelandscape.Terrestrialrestorationprojectswillbeinformedbybothhistoricandfuturerangeofvariabilityreferenceconditionsaswellfire,insect,anddiseaserisktoecologicalandsocialvalues.Inaddition,terrestrialobjectivesincludetherestorationofhabitateffectivenessbyreducingtheimpactsofroadsonaquaticandterrestrialhabitats.Totheextentpossibleaquaticandterrestrialrestorationprojectswillbeintegrated,orataminimum,coordinated,inordertoincreaseoperationalefficienciesandpromote“wholewatershed”restorationoutcomes.

Manatash‐TaneumobjectivesadaptedfromtheTapashSustainableForestsCollaborativemissionstatement(www.tapash.org),theOkanogan‐WenatcheeForestRestorationStrategy(2012),Hessburgetal.(2015)Restoringfire‐proneInlandPacificlandscapes:sevencoreprinciples,andYeager(2015)SummaryofAquaticResourceObjectivesandRecommendedDesignandImplementationElementsfortheMidandUpperColumbiaAnadromousandBullTroutProducingWatershedsofEasternWashington.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 5

2.LANDSCAPEEVALUATION&PRESCRIPTIONAPPROACH2.1WhyIntegratedTerrestrialandAquaticLandscapeEvaluations?Buildingupondecadesofresearch,ecologistsandlandmanagersnowunderstandtheimportanceofworkingatlandscapescalesforthemanagementofresilientecosystems(CrowandGustafson1997,WhiteandHarrod1997,Reimanetal.2010,Luceetal.2012,Hessburgetal2015).Whileterrestriallandscapeevaluationtoolsarebecomingwell‐developed(e.g.,Hessburgetal.2013,USDAForestService2012),anintegratedlandscapeevaluationapproachthatconsidersabroadsuiteofbothterrestrialandaquaticecosystemservicesandresourcevaluesisneeded(Dayetal.2009).Riemanetal.(2010)suggestthreestepstomoresuccessfullyintegratethemanagementofforests,fires,watersheds,andnativefishes:1)communicationamongdisciplinaryscientists,managers,andstakeholders,withacleardefinitionofmanagementgoals;2)translationofgoalstoobjectiveswithinthecontextsandconstraintsofthesystemsinquestion;and3)spatiallyexplicitintegrationofterrestrialandaquaticobjectivestoidentifyopportunitiesforconvergentsolutions.Followingthesesteps,theTapashCollaborativeisusingtheManastash‐Taneumprojecttotestanddevelopamorecloselyintegratedaquaticandterrestriallandscapeevaluation.ThisevaluationwillprovidetheTapashCollaborativewiththecontextofwhatisneededfor“wholewatershed”restorationwithineachsubwatershed.Theevaluationwillalsodescribethecontributionthateachlandownercanmaketorestoretheresiliencyoflandscapesandwatershedsthroughcoordinatedtreatmentsacrossownerships.2.2ForestandStreamInteractionsForestsandstreamsaretightlylinkedthrougharangeofcriticalecologicalprocessesandfunctions(NaimanandTurner2000).Theseincludethetransferofmaterialsandenergythatinfluencehabitatstructure(largewoodandsediment),foodwebsandtrophicdynamics(nutrientsandorganiccarbonsupply)andwaterqualityandtemperature(riparianshade)(Riemanetal.2010).Forestscanalsostronglyinfluencestreamhydrologythroughimpactsonsnowpackdynamics,runoff,evapotranspiration,soilmoisture,floodplainfunctioningandgroundwaterinfiltrationamongotherprocesses(Luceetal.2012,Lundquistetal.2013).Aquatichabitatsarestructuredbyinteractionsamongterrestrialandaquaticprocessesandclimate(Bissonetal.2003).Forexample,wildfiresinfluencehillslopeerosion,streamsedimentation,andlargewoodydebrisrecruitmenttostreams(Bendaetal.2003,Milleretal.2003).Certaintypesofdisturbances,suchasfireandlandslides,areessentialinthecreationandmaintenanceofchannelandriparianlandforms(Bendaetal.2003,Milleretal.2003).Whenhumanactivitiessuchasstreamcleaning,logdrives,diking,riparianlogging,anddamminghavesimplifiedchannels,disturbancessuchasfiresandlandslides,maybeabenefitinthelongtermbecausetheymayincreasephysicalandbiologicaldiversity(Bendaetal.2003,Flitcroftetal.2015).Landusessuchastimberharvest,firesuppression,androadnetworks,canalterthefrequencyandmagnitudeofnaturaldisturbances(Bendaetal.2003,Riemanetal.2010).Roadsinparticularhavewide‐rangingeffectsonhydrologicprocesses,watershedfunction,andfishhabitats.Thecompactedsurfaceofroadscanlowerinfiltrationcapacity,alterandconcentrateoverlandflow,andincreaseerosionanddeliveryofsedimenttothestreamsystem,whichcandegradefishhabitatquality(DunhamandRieman1999,Furnissetal.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 6

1991,LuceandBlack1999,Jonesetal.2000,Luceetal.2001,TrombulkaandFrissell2000,Meredithetal.2014).Roadscanalsointerceptsubsurfaceflowandconvertittorapidsurfacerunoff,extendingchannelnetworksandincreasingwatershedefficiency(LuceandBlack1999,TrombulkaandFrissell2000,Wondzell2001).Roadsreducevegetativecoverinstreamsideareasandacceleratedeliveryofwaterandincreaseerosionandsedimentationintostreams(TrombulkaandFrissell2000,Wondzell2001).Acceleratederosion,runoff,andsedimentdeliveryfromroadsincreasesstreambedfinesediment,whichaffectsaquatichabitatsandmacroinvertebratepopulations,andmakesstreambedsandbanksmoresusceptibletoerosionduringhighflowevents(LuceandBlack1999,Wondzell2001).Atroad‐streamcrossings,excessiveflowvelocitiesandundersizedculvertscanalterstreamchannelfunctionandfragmentfishhabitat(Furnissetal.1998).Otherroad‐relatedimpactsincludereducedpotentiallargewoodavailableforin‐channelwoodandshadefromriparianareas(TrombulkaandFrissell2000,Wondzell2001,Meredithetal.2014).Reducingnon‐climaticstressors,suchastheimpactsofroadsontheaquaticandterrestrialenvironment,hasbeenidentifiedasanimportantadaptivestrategytoreducetheeffectsofclimatechange(Strauchetal.2014,MantuaandRaymond2014).Thethermalenvironmentsthatorganismsexperiencestronglyaffecttheirvitalrates,distribution,andabundance(Kingsolver2009),especiallystreamfishes(Riemanetal.2007,Ruffetal.2011,GrenouilletandComte2014).Toaidmanagersintheassessmentandconservationofhabitatforcold‐waterfishes,currentavailabledataonsummerstreamtemperaturesandprojectedsummerstreamtemperaturesforthe2040sand2080sareavailableforallstreamsinthenorthwesternUS(VerHoefetal.2006,Isaaketal.2010,http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html).Generally,maximumsummerstreamtemperatures<170Careconsideredtobe“favorable”forsalmonrearing,17‐210C“stressful”forsalmonrearing,and>210C“fatal”(MantuaandRaymond2014).Thefutureavailabilityofcold‐waterrefugiaforfederallylistedsalmonidsisofparticularconcernduetoawarmingclimate(MantuaandRaymond2014,Isaaketal.2015).Giventhelargenumberofinteractionsbetweenforestsandstreams,thisinitialphaseoftheManastash‐Taneumprojectfocusesonsomeofthemostimmediatelinksbetweenforestmanagementandaquatichabitatsincludingroad‐streaminteractions,aquatichabitatconnectivity,theavailabilityofcold‐water,andtheinteractionsbetweenupslopeprocesses(e.g.,wildfires,landslides)andstreamfunctions..Table2.ListoflimitingfactorsforsteelheadrelevanttotheNorthForkTaneum,Taneum,andNorthForkManastashwatersheds(YBFWRB2009).

LimitingFactorsforSteelheadDegradedfloodplains AlteredsedimentroutingDegradedchannel ImpairedfishpassageDegradedriparianareaandlargewoodydebris

2.3AquaticLandscapeEvaluationMethodsThroughtheManatash‐TaneumprojectwearedevelopinganaquaticevaluationtocomplimenttheOkanogan‐WenatcheeForestRestorationStrategyterrestriallandscapeevaluationprocess(Hessburgetal.2013).Thisinitialphaseoftheaquaticevaluationfocusesonthefactorsthathavebeenidentifiedaslimitingforsteelheadrecovery(YBFWRB2009;Table2).Theoutcomeofthisprocesswastoidentifyareaswithineach

TapashManastash‐TaneumLandscapeEvaluationandPrescription 7

subwatershedthatprovideopportunitiestorestorestreamfunction,reducethenegativeimpactsofroadsonthestreamenvironment,improvethequalityofrearinghabitatforsteelhead,andrestoredisturbanceregimes.Wehypothesizedthatbyrestoringenvironmentalconditionsconducivetospawningsteelhead(theycurrentlyspawnintheassessmentarea),itwillalsoresultinmorefavorableconditionsforotherfishspecies(e.g.,bulltrout,historicallybutnotcurrentlypresentintheassessmentarea).Ouraquaticlandscapeevaluationprocessincludedthefollowingsteps:Step1:Rectifytheroadandstreamspatialdata.Thespatialdataavailableforourevaluationdidnotprovideanaccuraterepresentationofroadandstreamlocationsacrosslandownerships.Thus,weusedhigh‐resolutionimagerytorectifytheroadandstreamlayers.Thistaskwasverylaborintensivebutresultedinahighlyaccurateportrayaloftheroadsandstreamsmakingourevaluationmorerealisticandcredible.Thisstepwasimportantbecausemanyoftheaquaticindicators,suchasroad‐streamcrossingsandproximityofroadstocurrentandpotentialfishhabitat,requireaccurateinformationaboutthelocationofstreamsandroads.Asanexample,therewereapproximately20%moreroadsonthelandscapethanweremappedinanyoftheavailableroadsdatalayers.Step2.Identifyandmapfloodplains.WeusedthefloodplainmappingtoolinTerrainWorks(Bendaetal.2007)todevelopafloodplainsspatiallayer.Step3.Identifyandmapcurrentandintrinsichabitatpotentialforsteelhead.WeobtainedfishdistributiondatafromtheWashingtonDepartmentofFishandWildlifetomapcurrentsteelheadrearinghabitat.WeusedtheintrinsicpotentialhabitatmappingtoolinTerrainWorks(Bendaetal.2007),usingthedefaultvaluesforsteelhead,toidentifypotentialhabitatwithineachofthesubwatersheds.Step4.Assessroad‐streaminteractions.Weevaluatedthepotentialforroad‐streaminteractionsinavarietyofways.First,weassessedthepotentialfornegativeroad‐streaminteractionsinareasthatmayinfluencecurrentorpotentialsteelheadhabitat.Wedidthisbyoverlayingroads,trails,streams,andfishhabitatlayersinordertoidentifyportionsofroads(e.g.,segments)thateitheroccurredinfloodplainsorwerewithin300feetofcurrentorpotentialsteelheadhabitat.Thisresultedinamapshowingportionsofroadsandtrailsthatoccurredincloseproximitytocurrentorpotentialsteelheadhabitatthatwecouldreviewinthefield.Second,weintersectedtheroadandstreamlayerstoidentifyroad‐streamcrossings.Weoverlayedstream‐roadcrossingswithcurrentandpotentialsteelheadhabitatandidentifiedroad‐streamcrossingsthatwereviewedinthefieldfortheirpotentialtoprovidefishpassage.Third,weassessedthedensityofroad‐streamcrossingsintheremainderofthesubwatershed(up‐slopefromthemainchannel)inordertoevaluatetheup‐slopeeffectsthatroadsmaybehavingontheaquaticenvironment.Inaddition,thisinformationcanbeusedtoidentifypriorityareasforfocusedfieldevaluationofroad‐aquaticinteractionsusingtoolssuchasGRAIP(GeomorphicRoadAssessmentandInventoryProcess;Blacketal.2012,Cisseletal.2012).TodatehoweverGRAIPinventorieshavenotbeenconducted.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 8

Finally,asageneralmeasureofwatershedfunction,wecalculatedtheoveralldensityofroadsineachsubwatershed,andthedensityofroadswithinriparianzones(300footbuffer)ineachsubwatershed.WethenusedthemetricsfromtheWatershedConditionFrameworktocategorizeeachwatershedbasedonitslevelof“function”(PotyondyandGeier2010).Step5.Cold‐WaterRefugia.Weassessedmeansummer(August)streamtemperaturesalongmainstemstreamsineachsubwatershedusinginformationfromNorWeST(www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html).Theinformationavailableforeachstreamincludedasummaryofcurrentsummerstreamtemperatures,andprojectedsummerstreamtemperaturesforthe2040sand2080s.DetaileddescriptionsofhowthestreamtemperatureprojectionsweredevelopedareavailableinVerHoefetal.(2006)andIsaaketal.(2010).Wethencategorizedportionsofstreamsinto“favorable”forsalmonidrearingifthemeanAuguststreamtemperatureswerecurrentlyorprojectedtobe<170C,“stressful”forsalmonidrearingifmeanAuguststreamtemperatureswerecurrentlyorprojectedtobe17‐210C,and“fatal”ifmeanAuguststreamtemperatureswerecurrentlyorprojectedtobe>210C(MantuaandRaymond2014).Step6.NaturalDisturbanceRegimes.Becauseoftheimportantinteractionsbetweennaturaldisturbancessuchasfireandlandslidestothestreamecosystems(Bendaetal.2003,Milleretal.2003),weusedinformationfromtheterrestriallandscapeevaluationtoassesshowcurrentdisturbanceregimeshavedepartedfromhistoricalregimes.Weassumedthatbyrestoringnaturaldisturbanceregimes,theroleoffireandassociatedlandslideswouldalsoberestored(Riemanetal.2010).WeusedboththeStandLevelFireandVegetationCover‐Structurecomponentsoftheterrestriallandscapeevaluation(seebelow)toassessdepartureandhelptoidentifyrestorationopportunities.Step7.Fieldreview.Weconductedafieldreviewinorderto:1)evaluatetheroadandstreamlayer,2)reviewareaswhereroadsortrailswereincloseproximitytostreamsorinfloodplainsthatprovidedcurrentorpotentialsteelheadhabitat,3)reviewroad‐streamcrossingsforfishpassagethatoccurredincloseproximitytocurrentorpotentialsteelheadhabitat,and4)identifyopportunityareasforrestoration.Step8.Identifyrestorationopportunities.Weusedinformationgatheredfromthespatialdataandfieldreviewtoidentifyareaswithineachsubwatershedthatprovidedopportunitiestoimplementrestorativeactions,andtoidentifyareaswhereadditionalfieldsurveyinformationisneeded.Weusedthisinformationtodevelopa“landscapeprescription”,whichisadetailedlistofactionsandlocationsthatcouldbeimplementedtorestoreaquaticandterrestrialecosystemresiliency,andaddresslimitingfactorsforsteelheadrecovery.2.4TerrestrialEvaluationMethodsTheManastash‐TaneumterrestriallandscapeevaluationsandprescriptionsfollowtheOkanogan‐WenatcheeForestRestorationStrategy(OkaWenFRS;USDAForestService2012,Hessburgetal.2013)evaluationprocess.Thisprocessisbasedupontheconceptthatastandbystandapproachtoforestrestorationwithoutestablishingalandscapecontextforthelocation,amount,andtypeofrestorationtreatmentswillnotleadtoresilientforestedlandscapes.TheOkaWenFRSprocessprovidesaframeworktodirectlyapplythesevenprinciplesoflandscaperestorationoutlinedbyHessburgetal.(2015):

TapashManastash‐TaneumLandscapeEvaluationandPrescription 9

Principle1:Importantecologicalprocesses1operateacrossspatialscales–fromtreeneighborhoodstoregionallandscapes.Implication:Planningandmanagementmustincorporateandlinkthetreeneighborhood,patch,drainage/hillslope,locallandscapes,andregionallandscapes.Principle2:Topographyprovidesanaturaltemplateforvegetationanddisturbancepatternsacrossthelandscapehierarchyscales.Implication:UsetopographytoguiderestorationtreatmentsPrinciple3:Disturbanceandsuccessiondriveecosystemdynamics.Implication:Focusonrestoringtheecosystems’inherentfire/disturbanceregimesandvegetationsuccessionalpatterns;otherecologicalprocesseswillfollow.Principle4:Predictabledistributionsofforest‐patchsizesnaturallyemergefrominteractionsclimate‐disturbance‐topography‐vegetation.Implication:focusonrestoringthenaturaldistributionofforestpatchsizesacrosslandscapes.Principle5:Patchesare“landscapeswithinlandscapes:Implication:focusonrestoringcharacteristictreeclumpandgappatternswithinstands/patches.Principle6:Widelydistributedlarge,oldtrees,provideacriticalecologicalbackboneforforestedlandscapes.Implication:focusonretainingandpromotinglarge/oldtreesandpost‐disturbancelargesnagsanddownlogs.Principle7:Traditionalpatternsoflandownershipandmanagementdisruptinherentlandscapeandecosystempatterns.Implication:developrestorationprojectsthateffectivelyworkacrossforestownershipandmanagementallocations.

CurrentconditionswithineachoftheManastash‐Taneumsubwatershedsweremappedacrossownershipsthroughinterpretationofrecenthigh‐resolutionaerialphotography.Successionalpatches(sensuHessburgetal.2015)weredelineatedfromtheaerialphotographyandforeachsuccessionalpatch,23derivedattributesrepresentingarangeofvegetation,wildlifehabitat,andfire,insect,anddiseasesusceptibilityratingswerecalculatedfromthephoto‐interpretedattributes(Hessburgetal.2013;Table3).Photo‐interpretationswereinitiallyconductedbyPeteOlsen(Okanogan‐WenatcheeNationalForest).JamesBegley(WashingtonConservationScienceInstitute)subsequentlyconductedfieldreviewandrefinementofthephoto‐interpreteddatalayers.Thenextstepintheevaluationprocessassessedthedepartureofpresentdayconditionswithineachwatershedfromboth“HistoricRangeofVariability”(HRV)and“FutureRangeofVariability”(FRV)referenceconditionsforeachderivedattribute(Table3).HRVdescribestherangeofconditionsmayhaveexistedwithinaparticularsubwatershedbaseduponitsbiophysicalsettingspriorto20thcenturymanagement(Landresetal1999,Keaneetal.2009).FRVisa“climatechangeanalogue”referenceconditionthatestimatestherangeofconditionsthatmaydevelopwithinasubwatershedifhistoricecosystemswereallowedtoadaptnaturallytoapredictedwarmer‐drierclimateinabsenceof20thcenturymanagement(Gartneretal2008;Keeneetal2009).Bycomparingcurrentconditionsto

1Fishandwildlifedispersal,hydrology,andthefrequency,severity,andextentofdisturbancessuchasfire,insects,disease,wind,andfloods.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 10

boththehistoricandfuturereferenceconditions,managersarebetterabletoassessoptionsthatmimicpatternsandprocessesunderwhichspecieshaveevolved,butalsoconsiderwhatresilientlandscapesmaylooklikeinthefuture(Hessburgetal.2013,2015).Table3.Okanogan‐WenatcheeForestRestorationStrategyterrestriallandscapeevaluationphoto‐interpretationderivedattributes.Vegetation* WildlifeHabitatcont.Struct.ClassxCoverTypexPVG N.SpottedOwlPotentialStruct.ClassxCoverType WhiteHeadedWPStructureClassxPVG WildfireHazardCoverTypexPVG CrownFirePotentialPhysiognomictype RateofSpreadCoverType FlamelengthStructureClass FireLineIntensityMed‐LargeTreePresence FuelLoadingLateSuccessional‐OldForest FuelConsumptionRemnantLargeTree SmokePM10

SmokePM5WildlifeHabitat InsectHazardMarten Douglas‐firBeetleHazard

N.SpottedOwlCurrent W.SpruceBudworm*Note:SeeAppendixAforsummaryanddescriptionofvegetationandforeststructuralattributes.TheHRVandFRVreferenceconditionswerefromearlytomid‐20thcenturyaerialphotographythatwasconductedaspartoftheInteriorColumbiaBasinEcosystemManagementProject(ICBEMP;Hessburgetal.1999).TheICBEMPprojectphoto‐interpreted337subwatershedsacrosstheinteriorColumbiaBasin.Thesesubwatershedswerenestedwithinaclassificationof“EcologicalSubRegions”(ESR’s;Hessburgetal.2000).TheESR’srepresentedabroadclassificationofbio‐geo‐physicalsettings.EachESRineasternWashingtonhasasetof8‐20referencesubwatershedswithhistoricairphotointerpretationfollowingthesameinterpretationprotocolsanddevelopingthesamederivedattributes(Table3)asthepresentdayManastash‐Taneumcurrentconditionmapping.HRVreferenceconditionswerethendevelopedforeachManastash‐TaneumsubwatershedthroughcomparisonwiththehistoricdatafromsubwatershedsinthesameESR.HistoricdatafromsubwatershedsinthenextwarmeranddrierESRwereusedtodeveloptheFRVreferenceconditions(Gartneretal.2008).Centraltothelandscapeevaluationprocessiscomparingnotjusthowtheabundanceofthevegetation,wildlifehabitat,wildfireandinsectmeasuresmayhavedepartedfromHRV/FRV,buthowthespatialpatternsmayhavedeparted.“Spatialpattern”referstothesize,shape,andconfigurationofpatchesasdefinedbyvegetation,wildlifehabitat,wildfireandinsectmeasures.Thesespatialpatternsareacriticaldriverofecosystemprocessesandfunctioning(Hessburgetal.2015).Forexample,simplyevaluatingtheamountofnorthernspottedowlhabitatwithinasubwatersheddoesnotcapturewhetherthathabitatisfragmentedacrossmanysmallpatchesoraggregatedtogetherinfewlargepatches.Similarly,thedistributionofvegetationpatchsizeshasasignificantinfluenceonthespread

TapashManastash‐TaneumLandscapeEvaluationandPrescription 11

offireacrossalandscape(Hessburgetal.2015).WithineachoftheManastash‐Taneumsubwatersheds,weused6differentspatialmetricsinadditiontooverallabundancetocompareeachvegetation,wildlifehabitat,wildfire,andinsectmeasuretoHRVandFRVreferenceconditions(Table4,Figure2).ThedeparturesofcurrentconditionsfromHRVandFRVreferenceconditionsforeachsubwatershedaredescribedinthefollowingLandscapeEvaluationSummariesandLandscapePrescriptionssection.Weidentifiedpotential“LandscapeTreatmentAreas”(LTA’s)withineachsubwatershedbasedupontheLandscapePrescriptionsandusedanevaluationofsoilmoisturedeficit(sensuStephenson1998)tohelpaligntheLTA’swithnaturaltopographicandsoilpatterns(Principle2,Hessburgetal.2015).Basedupontopographicpositionandsoilwaterholdingcapacity,soilmoisturedeficitestimatesvegetationstressduetoseasonallackofwaterandhasbeenfoundtocorrelatewellwitharangeofecologicalimportantattributesincludingforeststructureandcomposition,fuelmoisture,andfirebehavior,(Lutzetal.2010,Kaneetal.2015).DeficitwascalculatedfollowingChurchillelal(2013)usinga10mdigitalelevationmodel,SSURGOsoilsdata(http://websoilsurvey.nrcs.usda.gov/)andClimateWNAclimatedata(http://www.climatewna.com/)).Table4.SpatialmetricsusedinOkanogan‐WenatcheeForestRestorationStrategyterrestriallandscapeevaluations.ClassMetrics BasicInterpretationPercentLand Percentageofthelandscapeoccupiedbyagivenclasstype.

Ecologicallyimportantindescribinglandscapecomposition

MeanPatchSize Averagepatchsizeforaclasstypeacrossasubwatershed.Representsthetypicalpatchsize.Animportantcomponentofhabitatquality.

PatchDensity Numberofpatchesonthesubwatershedbypatchtype(class).Indicateshowfragmentedisagivenclasstype.

MeanNearestNeighbor

Averagedistancebetweenanygivenpatchandtheclosestpatchofthesameclass.Representstheisolationofindividualpatches.

EdgeDensity Thetotallengthofedgeofagivenclasstyperelativetothesubwatershedsize.Aproxyforedgeeffectandfragmentation.

LandscapeMetricsContagion Howeasyitistomovewithinapatchtype,aggregatedacrossall

patchtypespresentonthelandscape.Ameasureoftheconnectivitywithineachclasstype.

Interspersion‐Juxtaposition

Howintermixedpatchesareacrossthesubwatershed.Reflectstheabilitytomovefromonepatchtypetoallotherpatchtypes.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 12

Figure2.ExampleoftheterrestriallandscapeevaluationmetricsoutputforforestcovertypeswithintheNorthForkTaneumsubwatershed.VerticallinesrepresentcurrentconditionsandhorizontalbarsrepresentHRV(green)andFRV(yellow)referenceconditions.SeeAppendixBforcompleteterrestrialevaluationoutputforallsubwatersheds.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 13

3. LANDSCAPEEVALUATIONSUMMARIESANDLANDSCAPEPRESCRIPTIONS

3.1AquaticEvaluationSummariesAcrossManastash‐Taneum,themeasuredindicatorssuggestthatroads(andothertravelroutes)arehavingaconsiderableinfluenceontheaquaticenvironmentinallsubwatersheds,butespeciallythosethathaveexistingorpotentialrearinghabitatforsteelhead(Figures3‐5,Table5).Therearemanyopportunitiestoreducetheroad‐streaminteractions,restorehydrologicfunctionsandprocesses,addresslimitingfactorsforsteelhead,andrestorenativedisturbanceregimes.Sections4–7belowprovidedetailedsummariesoftheAquaticEvaluationsforeachsubwatershed.Generally,habitatconnectivitywithinthecurrentandpotentialsteelheadhabitatwasgoodintheTaneumdrainage.However,welimitedourfieldreviewofroad‐streamcrossingstotheTaneumandNorthForkTaneum,becausesteelheadcurrentlyoccupyportionsofthesesubwatersheds.ThereisoneundersizedculvertintheNorthForkTaneum(seefurtherdetailsbelow)thatcouldpresentapassagebarrierduringcertaintimesoftheyear,suchaslowflow.Inaddition,thisculvertisnotsizedtohandleanticipatedhighflows.EffortsarecurrentlyunderwaytoaddressstreamflowsinthelowerreachesoftheNorthForkManastash,whichwouldprovidesteelheadaccesstoabout8milesofadditionalhabitat.Thisrestoredaccessmaywarrantfurtherevaluationofroad‐streamcrossingsaswasconductedintheTaneumdrainage.HeadwaterstreamsintheNorthForkTaneumandNorthForkManastashsubwatershedsarelikelytobecomeincreasinglyimportantcold‐waterrefugiaasstreamtemperaturesinlowerreachesareprojectedtoincrease(Isaaketal.2012).ThesechangesareprojectedtobemostdramaticintheTaneumsubwatershed,wherenearlytheentireportionofthestreamthatiscurrentlyusedasrearinghabitatbysteelheadislikelytoreachsummertemperaturesconsideredtobe“stressful”forrearingsalmonids(Table6).Itwillbecomeincreasinglyimportanttoreducenon‐climaterelatedstressorsonsteelheadhabitat.ForestandroadrestorationprojectsintheupperportionsoftheNorthForkTaneumandNorthForkManastashtorestorelargetreestructure,streamshade,andreducenegativeroad‐streaminteractions(e.g.,potentialforfine‐sedimentdelivery)wouldhelptoconservecold‐waterhabitats..

TapashManastash‐TaneumLandscapeEvaluationandPrescription 14

Table5.Acomparisonofindicatorvariablesshowingtheroad‐streaminteractionsforeachsubwatershedintheManastash‐TaneumLargeLandscapeRestorationProject.Sub‐watershed RouteDensity

(mi./sq.mi.)RoadDensityConditionRating1

MilesSteelheadPotentialHabitat2

MilesSteelheadRearingHabitat3

RouteMilesin100mBufferofSteelheadHabitat

NumberofCrossingswithin100mofSteelheadHabitat

NorthForkTaneum

4.4 Poor 14.2 0 19.5 89

Taneum 6.5 Poor ‐‐‐‐ 14.1 14.9 25NorthForkManastash

5.1 Poor 7.7 0 11.3

RobinsonCanyon 1.5 Fair 0.3 0 NA NA

1/BasedonForestServiceWatershedConditionFramework(PotyondyandGeier2010).2/Potentialhabitatisnotcurrentlyusedforrearingbysteelheadbuthasthepotentialtobeinthefuture.3/RearinghabitatiscurrentlybeingusedbySteelheadbasedonmostcurrentsurveyinformationTable6.Milesofcurrentorpotentialsteelheadrearinghabitatbystreamtemperaturecategorywithineachsubwatershedbasedoncurrentandprojected(2040,2080)meanAuguststreamtemperatures1(datanotavailableforRobinsonCanyon).Subwatershed MilesofCurrentorPotentialSteelheadRearingHabitatwithinStreamTemperatureCategories2

Current 2040s 2080s Favorable Stressful Fatal Favorable Stressful Fatal Favorable Stressful FatalNorthForkTaneum

14.2 0 0 14.2 0 0 14.2 0 0

Taneum 13.1 1.0 0 8.1 6.0 0 0 13.6 0.5NorthForkManastash

7.7 0 0 7.2 0.5 0 5.7 2.0 0

1/Streamtemperaturefromwww.fs.fed.us/NorWeST2/CategoriesbasedonMantuaandRaymond(2014)

TapashManastash‐TaneumLandscapeEvaluationandPrescription 15

Figure3.DistributionofroadsandcurrentandpotentialhabitatforsteelheadwithintheManastash‐Tanuemprojectarea.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 16

Figure4.RoaddensitiesinrelationtocurrentandpotentialsteelheadhabitatwithintheManastash‐Taneumprojectarea.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 17

Figure5.Densityofroad‐streamcrossingsintheManastash‐Taneumlandscaperestorationprojectarea(noteroad‐streamcrossingdensitieswerenotcalculatedforNorthForkManastashorRobinsonCanyonduetopoorqualityroaddata)

TapashManastash‐TaneumLandscapeEvaluationandPrescription 18

3.2TerrestrialEvaluationSummariesAlthoughtheManastash‐Taneumprojectareacontainsverylargeenvironmentalgradients,theterrestriallandscapeevaluationsrevealedseveralcommontrends.Asisexpectedgiventhemanagementhistoryofthesesubwatersheds,thetrendsareconsistentwiththeimpactsofpastwildfiresuppressionandindustrialforestmanagementSections4–7belowprovidedetailedsummariesoftheTerrestrialEvaluationsforeachsubwatershed..AcrossallsubwatershedsexceptRobinsonCanyon,Douglas‐fircoverwasoverabundantcomparedtoHRVandFRV(Figure6).Similarly,closedcanopyconditionsgenerallyandtheYoungForestMulti‐Storystructuralstagespecifically(seeAppendixAforstructuralstagedefinitions)weretypicallyoverabundantcomparedtobothHRVandFRVreferenceconditions(Figure7).Slightlycomplicatingtheinterpretationoftheseresultsisthattheforeststructuralstageandcovertypedepartureswhereoftenspecifictoaparticularpotentialvegetationgroup(e.g.,coldforest,moistforest,dryforest;seeAppendixAfordefinitions)withinthesubwatershed.Assessingthespatialpatternsofforestedvegetationrevealedgeneraltrendstowardsfragmentation.WithintheNorthForkTaneum,Taneum,andNorthForkManastashsubwatershedspatchdensities(toohigh),meannearestneighbordistances(toolow),andedgedensity(toohigh)spatialmetricsdepartedfromHRVandFRVformanyvegetationmeasures.Trendsinwildlifehabitatabundancevariedconsiderablyamongstthesubwatershedreflectingtheunderlyingenvironmentalgradients.BothcurrentandpotentialfuturenorthernspottedowlhabitatsareconcentratedintheNorthForkTaneumsubwatershedwherethemajorityofmoistforests(potentialvegetationgroup)arefound(Figure21).WhiletheabundanceofcurrentnorthernspottedowlhabitatiswithintheHRV(butexceedingFRVinNorthForkTaneum),itisoverlyfragmentedwithtoomanysmall,disconnectedhabitatpatchescomparedtoHRVandFRVacrossallsubwatersheds.Similarly,mostcommondeparturesforwhite‐headedwoodpecker,goshawk,andAmericanmartenhabitatwasfragmentationwithtoomanysmall,disconnectedhabitatpatchescomparedtoHRVandFRV.TheHRVandFRVreferenceconditionsforthewildfireandinsectdisturbancemeasurestendedtobeextremelywidewiththeonlytruedeparturesfoundintheNorthForkTaneumsubwatershed(elevatedcrownfireandwesternsprucebudwormhazard).Nevertheless,mappingofcurrentconditionwildfireandinsecthazardscanandshouldbeintegratedintotheplanningofrestorationmanagementactions.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 19

Figure6.Manatash‐Taneumvegetationcovertypes.SeeAppendixCforcompletesetofmapsforeachterrestrialmeasures.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 20

Figure7.Manatash‐Taneumterrestrialvegetationstructuralstages.SeeAppendixCforcompletesetofmapsforeachterrestrialmeasure.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 21

Figure8.Manatash‐Taneumcurrentnorthernspottedowlhabitat.SeeAppendixCforcompletesetofmapsforeachterrestrialmeasure.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 22

Figure9.Manatash‐Taneummoisturedeficit.SeeAppendixCforcompletesetofmapsforeachterrestrialmeasure.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 23

3.3RestorationOpportunitiesSummaryAcrosstheManastash‐Taneumprojectareawehaveidentifiedaseriesofaquaticandterrestrial“restorationopportunityareas”baseduponthelandscapeevaluationsandprescriptions(Tables6and7,Figures10and11).Theopportunityareaspresentpotentiallocationsforactivemanagementprojectstoaddressthekeylandscapeevaluationdeparturesandprescriptions.However,theyarenotexclusiveandactiverestorationactivitieswithinotherlocationsintheManastash‐Taneumprojectareamayalsoaddressthekeylandscapedeparturesandprescriptions.Eachrestorationopportunityareawillrequireadditionalin‐fieldscoping,evaluation,andenvironmentalreviewpriortoprojectimplementation.Alsoimportantly,additionalfieldreviewmayleadtosignificantmodifications/adjustments.WithintheNorthForkTaneumCreekandTaneumCreeksubwatershedswehaveidentified5distinct“opportunityareas”foraquaticrestorationprojects(Figure10,Table7).Eachoftheseaquaticrestorationopportunityareasfocusesonissuesrelatedtoroad‐streaminteractionsandpotentialnegativeimpactsonsteelheadhabitat.Table7.AquaticrestorationopportunitiesareaswithintheManastash‐Taneumlandscaperestorationprojectarea.

AquaticRestorationOpportunityAreaApplicableOwnerships

NFTaneumArea#1:Section21,ConfluenceofLookoutCreekandNorthForkTaneum

‐Water/sedimentdrainagefromroadintostream‐Potentialneedforculvertimprovements‐Highdensityofroad/streamcrossings

TNC

NFTaneumArea#2:Section23,ConfluenceofButteCreekandNorthForkTaneum

‐Undersizedmainculvert,potentialbarriertofishpassage‐Burnedareadeliveringsediment‐Smallculvertsreceivingfromburnedarea,crushedandoccluded‐Highdensityofroad/streamcrossings

TNC

NFTaneumArea#3:Sections33,34,27alongSouthForkTaneumCreek ‐Streamadjacentroad(3300‐135)confiningstreamchannel,

contributessediment,andreduceslargewoodydebrisinstreamsectionwithinpotentialsteelheadhabitat

USFS

NFTaneumArea#4:Sections26,27ConfluenceofFirstCreekandNorthForkTaneum

‐3300‐116roadwithsignificantchanneling,gullyingleadingtopotentialsteelheadhabitat.‐Dispersedcampsitesdeliveringsedimenttomainchannel

USFS

TaneumArea#1:Sections29,30ConfluenceofCedarCreekandTaneumCreek ‐Incisedchanneldeliveringsedimenttoexistingsteelheadhabitat

‐CulvertssmallandpartiallyoccludedWDFW&USFS

TapashManastash‐TaneumLandscapeEvaluationandPrescription 24

Table7:Continued.

AquaticRestorationOpportunityAreaApplicableOwnerships

TaneumArea#2:Sections29TaneumCreek ‐Dispersedcampingdeliveringsedimenttoexistingsteelheadhabitat WDFW&

USFSTaneumArea#3:Sections28,29TaneumCreek

‐Sedimentfromroadanddispersedcampingintoexistingsteelheadhabitat

WDFW&USFS

TaneumArea#4:ConfluenceofFirstCreekandNorthForkTaneum

‐Streamadjacentroad(mainline3300)confiningstreamchannel,contributessediment,andreduceslargewoodydebrisinstreamsectionwithinexistingsteelheadhabitat‐Dispersedcampingsitesdeliveringsedimentwithinexistingsteelheadhabitat

WDFW&USFS

TaneumArea#5:Sections36,1,TaneumCreek

‐Streamadjacentroad(mainline3300)confiningstreamchannel,contributessediment,andreduceslargewoodydebrisinstreamsectionwithinexistingsteelheadhabitat

WDFW&USFS

AcrosstheentireManastash‐Taneumprojectareawehaveidentifiedover17,000acresofterrestrialrestorationopportunityareaswhereactivemanagementmaybeusedtoaddresskeyecologicaldeparturesandfurthertheobjectivesofthelandscapeprescriptions(Table8,).WithinFigure11weidentifythreegeneralcategoriesofterrestrialrestorationopportunities.TerrestrialOpportunitiesCategoryA–Variabledensitythinning(mechanicalorprescribedfire)ofmostlyyoungforestmulti‐storyandstemexclusionclosedcanopystructuralstages,convertingtostemexclusionopencanopyforlong‐termdevelopmentintooldforestsinglestory.Generallypromotingponderosapineandwesternlarch(wherealreadypresent)andreducingDouglas‐fircover.Theseareasoccurpredominatelyonsoutherlyaspects.Restorationactivitiesneedtoincludeprotectionsforriparianareas,floodplains,andwetpatchesofcedar.LongtermtheselandsareNOTtargetedtoprovidenorthernspottedowlsourcehabitat.But,presentdayactivitiesneedtoavoidanyareaswithcurrentowlactivity.TerrestrialOpportunitiesCategoryB‐Generallypre‐commercialthinningofstandinitiationstructuralstagetoencouragedevelopmentofdesirabledominantsandco‐dominants.Long‐termtargetsmaybeeitheropencanopysinglestoryorclosecanopymulti‐story.TerrestrialOpportunitiesCategoryC‐Variabledensitythinning(mechanicalorprescribedfire)inpredominatelyyoungforestmulti‐storytoacceleratedevelopmentofcomplexmulti‐canopylayerstructure.Atthisstageoftheanalysis,wehavenotidentifiedwhichacresaresuitableforthinningviatractoryarding,cableyarding,prescribedfire,etc.Silviculturalprescriptionswillvarydramaticallyamongstterrestrialrestorationopportunityareasbaseduponthelandscapeprescriptionsandobjectivesforwithin‐standspatialpatterns.Techniquessuchasthe

TapashManastash‐TaneumLandscapeEvaluationandPrescription 25

“Individuals‐Clumps‐Openings”approachcanbeusedtoquantify,prescribe,andimplementappropriatewithinstandspatialpatterns(Churchilletal.2013).Table8.TerrestrialrestorationopportunitiesareaswithintheManastash‐Taneumlandscaperestorationprojectarea. TreatmentCategory Acres ApplicableOwnershipsNorthForkTaneumCreek

‐A&C;Variabledensitythinninginmoist‐forestYFMStoeitherpromoteopen‐canopyconditions(A)ormulti‐layer(C)

~4,000 USFS

‐B;Pre‐commercialthinninginmoist‐forestSItoacceleratestructuraldevelopment

2,000+ TNCprimarily,alsoUSFS

TaneumCreek

‐A;Variabledensitythinninginmoist&dryforestYFMS&SECCtopromoteopen‐canopyconditions

4,600+ WDFW,USFS,alsoWDNR

‐B;Pre‐commercialthinningindry‐forestSItoaccelerateopencanopystructuraldevelopment

1,500+ MostlyWDFW,alsoWDNRandUSFS

NorthForkManastashCreek ‐A;Variabledensitythinningindryforest

YFMS&SECCtopromoteopen‐canopyconditions

2,000+ WDFW,WDNR

‐B;Pre‐commercialthinningindry‐forestSItoaccelerateopencanopystructuraldevelopment

1,200+ MostlyWDFW,alsoWDNRandUSFS

RobinsonCrk. ‐A;Variabledensitythinningindryforest

YFMSandSItopromoteopen‐canopyconditions

2,300+ MostlyWDFW,alsoWDNR

Total 17,600+

TapashManastash‐TaneumLandscapeEvaluationandPrescription 26

Figure10.AquaticrestorationopportunitiesareaswithintheManastash‐Taneumlandscaperestorationprojectarea.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 27

Figure11.TerrestrialrestorationopportunityareaswithintheManastash‐Taneumlandscaperestorationprojectarea.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 28

4NorthForkTaneumSubwatershed4.1NorthForkTaneumAquaticEvaluationandPrescriptionTheNorthForkTaneumsubwatershedis29,537acresinsizeandincludesaconsiderableamountofpotentialhabitatforsteelhead,inboththeNorthandSouthForksofTaneumCreek(Fig.6),thatiscurrentlynotbeingusedforrearing.ThedownstreambarriersthatpreviouslypreventedaccessforfishtotheTaneumandNorthForkTaneumhavebeenaddressed.Theoverallroaddensityishigh,givingthewatershedapoorconditionrating.However,roaddensitiesarenotevenlydistributedacrossthewatershed(Fig.7).Roaddensitiesareespeciallyhigh(>5miles/squaremile)inthewesternportionofthesubwatershed,andonthenorthsidesofboththeNorthandSouthForksofTaneumCreek.Themainroad(Rd33)alongtheNorthForkTaneumCreekoccurswithinfloodplains,isconfiningthechannel,reducingthepotentialforlargewoodrecruitment,andcreatingasituationthatcancausechronicdeliveryofsedimenttothestream.

TheterrestriallandscapeevaluationshowedthatforestedhabitatsaregenerallyoverlyfragmentedcomparedtoboththeHRVandFRV,andthattheabundanceofyoungforest‐multi‐story(YFMS)andstandinitiation(SI)areoverabundantcomparedtoHRVandFRV.Thecrownfirepotential“high”categoryisconsiderablyabovetheFRV,indicatingaconsiderableriskoflarge‐scalefire,makingthissubwatershedsusceptibletolarge‐scaledisturbancesandincreasestheriskofeffectstohydrologicandwatershedfunctions.Theterrestriallandscapeprescriptionidentifiedopportunitiesacrosslandownershipstorestoreforestvegetationstructureandcompositiontomoreresilientconditions,whichinturnwouldreducetheriskofuncharacteristicallyseverefiresandcontributetotherecoveryoflistedfishspecies(Bissonetal.2003,Reissetal.2008).

Weidentifiedfourrestorationopportunityareasalongthemain‐stemoftheNorthandSouthForksofTaneumCreek(Fig.8).Inaddition,weidentifiedareaswithhighdensitiesofroadsandroad‐streamcrossingswhereadditionalfieldworkcouldidentifyopportunitiestoreduceroaddensitiesandrestorewatershedprocessesandfunctions(Fig.9).Finally,thereisanopportunitytoreviewthecurrentlocationofthemainroad(Rd33)anddetermineifitcouldberelocatedtoreducethenegativeimpactsthisroadishavingontheaquaticenvironment.

Collectivelytheseprojectswouldaddressthefollowinglimitedfactorsidentifiedforsteelheadrecovery:degradedfloodplains,degradedchannel,degradedriparianareaandlargewood,alteredsedimentrouting,andimpairedfishpassage.

OpportunityArea1–Section21,confluenceofLookoutCreekandNorthForkTaneum

‐Waterandsedimentdrainsontobridgethengetsroutedintothestream(NFTphotos1.1and1.2).Waterandsedimentalsodrainsintoditchalongsidetheroadandthendeliveredintothestream(NFTphotos1.3,1.4,and1.5).Therearealsootherareaswithculvertsthatneedconsiderationforimprovement(NFTphotos1.7,1.8,and1.9).Generalareahasahighamountofroad/streamcrossings(10‐15crossingspersquaremile).

OpportunityArea2–Section23,confluenceofButteCreekandNorthForkTaneum

‐Culvertmaybeundersizedandcouldpotentiallybeabarriertoanadromousfishpopulations(NFTphoto2.1)duringperiodsoflowflows.AreasdirectlynorthwereburnedintherecentTaneumRidgefireandcontributesedimentimmediatelydownstreamfromtheaforementionedculvert(NFTphoto2.2and2.3).Smallculvertsreceivingwaterand

TapashManastash‐TaneumLandscapeEvaluationandPrescription 29

sedimentfromthepreviouslyburnedareaarecrushedandoccluded(NFTphotos2.4,2.5,and2.6).).Generalareahasaveryhighamountofroad/streamcrossings(>15crossingspersquaremile).

OpportunityArea3–Sections33,34,27alongSouthForkTaneumCreek

‐The3300‐135roadisimmediatelyadjacenttothestreamwithinpotentialsteelheadhabitat.Thisroadparallelsdirectlyalongsidethestreamandconfinesthechannel,contributessediment,andhasreducedthesourceforlargewood.Fieldsurveyofthisroadwouldrevealthebestoptionsforrestorationactions.

OpportunityArea4–Sections26,27,confluenceofFirstCreekandNorthForkTaneum

The3300‐116roadhassignificantchannelingontheroadsurfaceandgullyingonthesideleadingtothemainchannelandpotentialsteelheadhabitat(NFTphotos4.1and4.2).Therearedispersedcampingsitesdirectlyadjacenttothestreamthathaveroadsdeliveringsedimenttothemainchannel(NFTphotos4.3and4.4).

ReduceRoadDensityandRoad‐StreamCrossings

Conductfieldsurveystoidentifyspecificroads/motorizedtrailsandroad‐streamcrossingsforrestoration,includingintegrationwithareasidentifiedforterrestrialrestorationtreatments.TheseareasincludetheareasadjacenttoandupslopefromOpportunityAreas1‐4(Fig.8)

4.2NorthForkTaneumTerrestrialLandscapeEvaluationTheNorthForkTaneumsubwatershed(UYK_0503)is29,537acrescomprisedprimarilyofmoistforests(20,923ac.)withsmalleramountsofcoldforests(5,540ac.),dryforests(2,530ac.),andothernon‐forestedvegetationtypes(540ac.).OwnershipisdominatedbytheUSForestService(21,030)withalesseramountmanagedbyTheNatureConservancyfollowingrecentacquisitionfromPlumCreekTimber(7,611ac.).HistoricalRangeofVariability(HRV)referenceconditionswerebaseduponEcologicalSubRegion(ESR)4,andFutureRangeofVariability(FRV)referenceconditionswerebaseduponESR11.

Vegetation Overall,vegetationpatchesareoverlyfragmentedwithpatchdensity,meannearest

neighbor,andedgedensityspatialmetricsdepartedfromHRVandFRVformanyvegetationmeasures.

CoverofDouglas‐firisfaroverabundantcomparedtobothHRVandFRVwhilethecoverofPonderosapine(365ac.current)isonthelowendofHRVandisextremelylowcomparedtoFRV.

Withinmoistforests,theabundanceoftheyoungforestmulti‐story(yfms)andstandinitiationstructuralstages(si)areoverabundantcomparedtoHRVandFRV.

VegetationVariable Current HRV FRVCover‐(acres)Douglas‐fir 21,933 1,500‐15,600 0‐15,700ponderosapine 352 0‐2,900 1,500‐22,900

StructuralStage‐(acres)MoistForest–YFMS 9,604 0‐6,000 0‐5,300MoistForests–SI 4,004 0‐1,500 0‐3,000

TapashManastash‐TaneumLandscapeEvaluationandPrescription 30

WildlifeHabitat Theamountofwhite‐headedwoodpeckerandgoshawkhabitatiswithinHRVandFRV

butisoverlyfragmented. TheamountofAmericanmartenhabitatisoverFRVandisoverlyfragmented. TheamountofcurrentnorthernspottedowlhabitatiswithinHRVbutisover‐abundant

comparedtoFRVandisoverlyfragmented. TheamountofpotentialfuturenorthernspottedhabitatiswithinHRVandFRV,butis

alsooverlyfragmented.

Wildlifemeasure Current HRV FRVHabitat‐PercentLand(acres)spottedowl‐current 7,598 970‐12,000 0‐5,400spottedowl–future 8,076 1,700‐18,100 760‐18,100

Habitat‐PatchDensity(patchesper10khectares)spottedowl‐current 35 9‐47 0‐35spottedowl–future 91 9‐47 2‐45

Habitat‐EdgeDensity(metersperhectare)spottedowl‐current 34 4‐27 0‐25spottedowl–future 36 8‐30 1‐35

Disturbance Crownfirepotential“high”categoryiswayaboveFRV. Westernsprucebudworm“moderatehazard”isaboveHRVandFRVwhilethe“low

hazard”categoryisatthelowerendoftheFRVrange.Disturbancemeasure Current HRV FRVCrownFirePotential(acres)Low 6,671 4,200‐16,100 12,000‐27,000Moderate 7,270 23,400‐8,300 1,500‐10,700High 15,592 5,700‐19,200 0‐7,100

WesternSpruceBudwormHazard(acres)Low 6,657 1,800‐10,600 27,100‐28,200Moderate 9,103 1,200‐8,200 3,300‐8,000High 13,773 13,700‐24,700 9,600‐23,300

TapashManastash‐TaneumLandscapeEvaluationandPrescription 31

4.3.NorthForkTaneumTerrestrialLandscapePrescription Reconnectvegetationandhabitatpatchesbasedonpatternsoftopography/soil

o Acrossthewatershed,focusonconnectingsimilarpatchesformostcover‐structureandwildlifehabitatstoreducetototalnumberofpatchesandedgedensitiesbaseduponinherentpatternsoftopographyandsoilwithinthewatershed.

Treatmoist‐foreststandinitiation:o Usepre‐commercialthinningtoacceleratesuccessionaldevelopmentofmoist

forestsi,whichisfoundpredominatelyonTheNatureConservancy(2,684ac.,67%ofallmf‐si)andUSForestService(1,002ac.,25%ofallmf‐si)ownerships.

Treatmoist‐forestyoungforestmulti‐story:o Withinmoistforests,convert~4,000acresofyfmstostemexclusionopen

canopy(seoc)inordertoacceleratedevelopmentofoldforeststructureswhilereducingcrownfirepotentialandwesternsprucebudwormhazard.

o Dependingupontreatmentandsuccessionrateswithinthecurrentsi,another~1,000acresofyfmsmaybeconvertedtostandinitiation

o Treatmentsofmoistforest‐youngforestmulti‐storywillnecessarilybefocusedonUSForestServicelandswhichcontain91%(8,773ac.)ofthemoistforest‐yfms.

Decreasedisturbancehazards.o Usetreatmentsinmoistforest–youngforestmultistorytoreducefireand

insecthazards,particularlyinlocationswheretreatmentcanbeusedtoprotectnorthernspottedowlcurrentandfuturehabitat.

Promoteponderosapineandwesternlarchcovero Wherepossible,usetreatmentswithinsiandyfmstoreduceDouglas‐fircover

andpromoteponderosapineandwesternlarch.Thisisparticularlyvaluablewithinrelativelydrierlocationsbasedupontopographyandsoils,andcanbeusedtocreatelargerpatchesofhabitatforwhite‐headedwoodpeckers.

Long‐termhabitatshiftsacrosssubwatershedo Planforalongtermshiftofnorthernspottedowlandotherlatesuccessional

habitatsfrommesicanddryforests“lower”inthesubwatershed(easternhalfofsubwatershed)tothemoistandcoldforests“higher”inthewatershed(westernhalfofthesubwatershed)wheretheywillbemostsustainable.

o Identifylandscapelocationsinthedryandmesicforests,suchasnorthslopesandvalleybottoms,whereclosed‐canopymulti‐layeredhabitatsaremostlikelytobesustainedandcanbemanagedforfuturereplacementhabitat.

Increasewildlifehabitateffectivenesso Developanintegratedapproachtoaccessmanagementthatreducesoverall

effectsoftravelroutesonaquaticandterrestrialhabitats,whileprovidingaccessneededforrecreationandforestmanagement.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 32

5.TaneumSubwatershed5.1TaneumAquaticEvaluationandPrescriptionTheTaneumsubwatershedis25,726acresinsizeandincludesaconsiderableamountofcurrentrearinghabitatforsteelhead(Fig.6).Theoverallroaddensityishigh,givingthewatershedapoorconditionrating.Roaddensitiesarefairlyevenlydistributedacrossthewatershed(Fig.7).Themainroad(Rd33)alongTaneumCreek,occurswithinfloodplains,isconfiningthechannel,reducingthepotentialrecruitmentoflargewood,andhasthepotentialtochronicallydeliversedimenttothestream.

TheterrestriallandscapeevaluationshowedthatforestedhabitatsaregenerallyoverlyfragmentedcomparedtoboththeHRVandFRV,andthatwithinthedryforests,theabundanceofstemexclusionclosedcanopy(SECC),youngforest‐multi‐story(YFMS)andstandinitiation(SI)areoverabundantcomparedtoHRVandFRV.Theterrestriallandscapeprescriptionidentifiedopportunitiesacrosslandownershipstorestoreforestvegetationstructureandcompositiontomoreresilientconditions,whichinturnwouldreducetheriskofuncharacteristicallyseverefiresandcontributetotherecoveryoflistedfishspecies(Bissonetal.2003,Reissetal.2008).

Weidentifiedfiverestorationopportunityareasalongthemain‐stemTaneumCreek(Fig.8).Inaddition,weidentifiedareaswithhighdensitiesofroadsandroad‐streamcrossingswhereadditionalfieldworkcouldidentifyopportunitiestoreduceroaddensitiesandrestorewatershedprocessesandfunctions(Fig.9).Finally,thereisanopportunitytoreviewthecurrentlocationofthemainroad(Rd33)anddetermineifitcouldberelocatedtoreducethenegativeimpactsthisroadishavingontheaquaticenvironment.

Collectivelytheseprojectswouldaddressthefollowinglimitingfactorsidentifiedforsteelheadrecovery:degradedfloodplains,degradedchannel,degradedriparianareaandLWD,andalteredsedimentrouting.

OpportunityArea1–Section29,30,confluenceofCedarCreekandTaneumCreek

Incisedchannelsdeliversedimenttomainchannelwithinexistingsteelheadhabitatandculvertsaresmallandpartiallyoccluded(Tphotos1.1,1.2,and1.3).

OpportunityArea2–Section29,TaneumCreek

Therearedispersedcampingsitesinthefloodplaindirectlyadjacenttothestreamdeliveringsedimenttothemainchannelintoexistingsteelheadhabitat(Tphotos2.1.2.2,and2.3).

OpportunityArea3–Sections28,29,TaneumCreek

Thereisanunnamed/numberedroadwithabridge.Sedimentisdeliveredfromtheroadsurfaceanddispersedcampsitesintoexistingsteelheadhabitat(Tphotos3.1,3.2,3.3,and3.4).

OpportunityArea4–Sections33,34,TaneumCreek

‐Themainline3300roadisimmediatelyadjacenttothestreamwithinexistingsteelheadhabitat.Thisroadparallelsdirectlyalongsidethestream,confinesthechannel,reducesfloodplainpotential,contributessediment,andhasreducedthesourceforLWD(Tphotos4.1and4.2).Therearedispersedcampingsitesinthefloodplaindirectlyadjacenttothestreamdeliveringsedimenttothemainchannel(Tphotos4.3and4.4).

OpportunityArea5–Sections36,1,TaneumCreek

TapashManastash‐TaneumLandscapeEvaluationandPrescription 33

Themainline3300roadisimmediatelyadjacenttothestreamwithinexistingsteelheadhabitat.Thisroadparallelsdirectlyalongsidethestream,confinesthechannel,reducesfloodplainpotential,contributessediment,andhasreducedthesourceforLWD(Tphotos5.1and5.2).

ReduceRoadDensityandRoad‐StreamCrossings

Conductfieldsurveystoidentifyspecificroadsandroad‐streamcrossingsforrestoration,includingintegrationwithareasidentifiedforterrestrialrestorationtreatments.Theseinclude:theareasadjacenttoandupslopefromOpportunityArea1;theareatothesouthofTaneumCreekandOpportunityArea3alongShadowCreek;theareatothesouthofTaneumCreekandOpportunityArea4betweenShadowCreekandYahneCanyon(Fig.8).

5.2TaneumTerrestrialLandscapeEvaluationTheTaneumCreeksubwatershed(UYK_0504)is25,726acrescomprisedprimarilyofdryforests(12,109ac.)withsmalleramountsofmoistforests(6,194ac.)andothervegetationtypes(7,545ac.).WashingtonDepartmentofFishandWildlifeislargestlandowner(WDFW;13,465ac.)followedbyWashingtonDepartmentofNaturalResources(WDNR;4,743ac.),USForestService(USFS;3,693ac.)andothers(3,931ac.).HistoricalRangeofVariability(HRV)referenceconditionswerebaseduponEcologicalSub‐Region(ESR)11,andFutureRangeofVariability(FRV)referenceconditionswerebaseduponESR90.Vegetation Overall,vegetationpatchesareoverlyfragmentedwithpatchdensity,meannearest

neighbor,andedgedensityspatialmetricsdepartedfromHRVandFRVformanyvegetationmeasures.

CoverofDouglas‐firisatthehighendbothHRVandFRV,especiallywithindryforests,whilethecoverofponderosapineisonthelowerendofHRVandFRV.

Withindryforests,thestemexclusionclosedcanopy(secc),standinitiation(si),andyoungforestmulti‐story(yfms)structuralstagesareoverabundantcomparedtoHRVandFRV

VegetationVariable Current HRV FRVCover‐(acres)Douglas‐fir 11,399 0‐13,700 0‐11,400ponderosapine 6,515 1,400‐20,000 0‐16,300Dryforest‐Douglas‐fir 5,750 0‐3,000 0‐2,300

StructuralStage‐(acres)Dryforest–SI 3,062 0‐2,600 0‐2,200Dryforest–SECC 1,419 0–200 0‐130Dryforest–YFMS 4,221 0‐2,300 0‐2,300

WildlifeHabitat Theamountofwhite‐headedwoodpecker,goshawk,andnorthernspottedowlcurrent

habitatisatthelowerendofHRVandFRV. TheamountofpotentialfuturenorthernspottedowlhabitatiswithinHRVandFRV,but

isoverlyfragmented.

Wildlifemeasure Current HRV FRV

TapashManastash‐TaneumLandscapeEvaluationandPrescription 34

Habitat‐PercentLand(acres)spottedowl‐current 492 0‐4,700 0‐4,100spottedowl‐future 8,896 700‐15,800 0‐14,600

Habitat‐PatchDensity(patchesper10khectares)spottedowl‐future 88 3‐45 0‐27

Habitat‐EdgeDensity(metersperhectare)spottedowl‐future 53 1‐35 0‐33

Disturbance FireandinsecthazardvariablesareallwithinverywideHRVandNRVranges.5.3TaneumTerrestrialLandscapePrescription Reconnectvegetationandhabitatpatchesbasedonpatternsoftopography/soil

o Acrossthewatershed,focusonconnectingsimilarpatchesformostcover‐structureandwildlifehabitatstoreducetototalnumberofpatchesandedgedensitiesbaseduponinherentpatternsoftopographyandsoilwithinthewatershed.

o Inparticular,focusonconnectingpatchesofnorthernspottedowlpotentialfuturehabitatandwhite‐headedwoodpeckerhabitat.

Thinningdryforestclosedcanopypatchestocreateopencanopyconditionso Withindryforest,convert900+acresofstemexclusionclosedcanopyand

3,700+acresofyfmstoopencanopyconditions(likelytostemexclusionopencanopy,seoc)inordertoacceleratethedevelopmentofoldforestsinglestory(ofss)andtoreducedfirepotentials.Prioritizethinningwherelarge(25”+dbh)ponderosapineand/orwesternlargearealreadypresent. ThinningofdryforestyfmscanincludeWDFW(2,471ac.total),USFS

(1,042ac.)andWDNR(684ac.total)ownerships. EssentiallyalldryforestsecccouldbethinnedonWDFW(388ac.total),

USFS(193ac.total)andWDNR(277ac.total)ownerships.o Withindryforests,thinstandinitiationwhereverpossibletoaccelerate

successionaldevelopmentandpromoteopencanopystandconditionswithponderosapine/westernlarchcover. IncludesdryforestsionWDFW(1,888ac.),USFS(177ac.)andWDNR

(957ac.)ownerships. Promoteponderosapineandwesternlarchcover

o Wherepossible,usethinningtreatmentstoreduceDouglas‐fircoverandpromoteponderosapineandwesternlarch.Thisisparticularlyvaluablewithinrelativelydrierlocationsbasedupontopographyandsoils,andcanbeusedtorestorehabitatabundanceandpatchsizesforwhite‐headedwoodpeckers.

Balancethinningandwildlifehabitato Thinningofclosedcanopypatchesneedstobebalancedwiththemaintenanceof

northernspottedowlandgoshawkhabitat.Usethinningtoprotectclosedcanopywildlifehabitatsfromtransmissionoffireandinsectdisturbances.

o Duetothetransientnatureofclosed‐canopy,multi‐layeredhabitatswithinthedryandmesicforests,consideredidentifyinglandscapelocations,suchasnorthslopesandvalleybottoms,wherethesehabitatsaremostlikelytobesustainedandcanbeusedforfuturereplacementhabitat.

Increasewildlifehabitateffectiveness

TapashManastash‐TaneumLandscapeEvaluationandPrescription 35

o Developanintegratedapproachtoaccessmanagementthatreducesoveralleffectsoftravelroutesonaquaticandterrestrialhabitats,whileprovidingaccessneededforrecreationandforestmanagement.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 36

6. NorthForkManastash

6.1NorthForkManastashAquaticEvaluationandPrescriptionTheNorthForkManastashsubwatershedis13,447acresinsizeandincludesabout8milesofpotentialhabitatforsteelhead(Fig.6).Theoverallroaddensityishigh,givingthewatershedapoorconditionrating.Theroaddensitiesarenotevenlydistributedacrossthewatershed,withthehighestdensitiesoccurringinthewesternportion(Fig.7).

TheterrestriallandscapeevaluationshowedthatforestedhabitatsaregenerallyoverlyfragmentedcomparedtoboththeHRVandFRV,andthatwithinthedryforests,theabundanceofstemexclusionclosedcanopy(SECC),youngforest‐multi‐story(YFMS)andstandinitiation(SI)areoverabundantcomparedtoHRVandFRV.Theterrestriallandscapeprescriptionidentifiedopportunitiesacrosslandownershipstorestoreforestvegetationstructureandcompositiontomoreresilientconditions,whichinturnwouldreducetheriskofuncharacteristicallyseverefiresandcontributetotherecoveryoflistedfishspecies(Reissetal.2008).

ReduceRoadDensityandRoad‐StreamCrossings

Conductfieldsurveystoidentifyspecificroadsandroad‐streamcrossingsforrestoration,includingintegrationwithareasidentifiedforterrestrialrestorationtreatments.

6.2NorthForkManastashTerrestrialLandscapeEvaluationTheNorthForkManastashsubwatershed(UYK_0509)is13,447acrescomprisedprimarilyofdryforest(8,127ac.)withsmalleramountsofmoistforest(1,291ac.)andothervegetationtypes(4,033ac.).OwnershipisdominatedbyWashingtonDepartmentofFishandWildlife(WDFW,8,467ac.)alongwithWashingtonDepartmentofNaturalResources(WDNR,3,264ac.),USForestService(USFS,1,287ac.)andotherownerships(433ac.).HistoricalRangeofVariability(HRV)referenceconditionswerebaseduponEcologicalSubRegion(ESR)11,andFutureRangeofVariability(FRV)referenceconditionswerebaseduponESR90.Vegetation Overall,vegetationpatchesarefragmentedwithpatchdensity(toohigh),meannearest

neighbordistances(toolow),andedgedensity(toohigh)spatialmetricsdepartedfromHRVandFRVformanyvegetationmeasures.

CoverofDouglas‐firisinexcessofbothHRVandFRV,particularlywithindryforests.PonderosapineandwesternlarcharebothatthelowendofHRVandFRV.

Particularlywithindryforests,theabundanceofstandinitiation(si),stemexclusionclosedcanopy(secc),andyoungforestmultistory(yfms)structuralstagesareattheupperendorexceedingHRVandFRV.Thestemexclusionopencanopy(seoc),oldforestsinglestory(ofss)andoldforestmultistory(ofms)structuralstagesareallatthelowendofHRVandFRV.

Vegetationmeasure Current HRV FRVCover(acres)Douglas‐fir 6,608 0‐7,100 0‐6,000ponderosapine 2,526 700‐10,420 0‐8,500Dryforest‐Douglas‐fir 5,458 0‐1,600 0‐1,200

TapashManastash‐TaneumLandscapeEvaluationandPrescription 37

StructuralStage(acres)Dryforest‐SI 2,043 0‐1,300 0‐1,100Dryforest‐SECC 511 0‐0 0‐0Dryforest‐YFMS 2,213 0‐1,200 0‐1,200

WildlifeHabitat TheamountofwhiteheadedwoodpeckerhabitatisatthelowendofHRVandFRVis

overlyfragmented.AbundanceofgoshawkhabitatisalsoatthelowendofHRVandFRV.

TheamountofcurrentandpotentialfuturenorthernspottedowlhabitatarebothwithinHRVandFRV,butarealsobothoverlyfragmented.

Wildlifemeasure Current HRV FRVHabitat(acres)whiteheaded

woodpecker 532 0‐2,300 0‐1,700spottedowl‐current 1,116 0‐2,500 0‐2,200spottedowl‐future 3,337 350‐8,300 0‐7,700

Disturbance Crownfirepotential“high”categoryisaboveHRVandFRVwhilethe“low”categoryisat

lowendofHRVandFRV. Westernsprucebudworm“moderatehazard”isaboveHRVandFRVwhilethe“low

hazard”categoryisatthelowerendoftheFRVrange.

Disturbancemeasure Current HRV FRVCrownFirePotential(acres)low 7,615 5,400‐12,261 5,900‐13,400moderate 2,420 700‐4,900 0‐4,300high 3,416 0‐3,200 0‐2,800

WesternSpruceBudwormHazard(acres)low 5,743 1,200‐12,900 1,400‐13,400moderate 5,032 150‐1,600 0‐3,500high 2,676 400‐10,600 0‐9,200

TapashManastash‐TaneumLandscapeEvaluationandPrescription 38

6.3NorthForkManastashTerrestrialLandscapePrescription Reconnectvegetationandhabitatpatchesbasedonpatternsoftopography/soil

o Acrossthewatershed,focusonconnectingsimilarpatchesformostcover‐structureandwildlifehabitatstoreducetototalnumberofpatchesandedgedensitiesbaseduponinherentpatternsoftopographyandsoilwithinthewatershed.

o Inparticular,focusonconnectingpatchesofwhiteheadedwoodpecker,northernspottedowlcurrent,andnorthernspottedowlpotentialfuturehabitat.

Thinningdryforestclosedcanopypatchestocreateopencanopyconditionso Withindryforest,convert500+acresofstemexclusionclosedcanopyand

1,500+acresofyfmstoopencanopyconditions(likelytostemexclusionopencanopy,seoc)inordertoacceleratethedevelopmentofoldforestsinglestory(ofss)andtoreducedfirepotentials.Prioritizethinningwherelarge(25”+dbh)ponderosapineand/orwesternlargearealreadypresent. ThinningofdryforestyfmscanincludeWDFW(1,072ac.total),WDNR

(925ac.total),andtoalesserextent,USFS(73ac.)ownerships. EssentiallyalldryforestsecccouldbethinnedonWDFW(307ac.total),

USFS(148ac.total)andWDNR(55ac.total)ownerships.o Withindryforests,thinstandinitiationwhereverpossibletoaccelerate

successionaldevelopmentandpromoteopencanopystandconditionswithponderosapine/westernlarchcover. IncludesdryforestsionWDFW(1,672ac.),USFS(124ac.)andWDNR

(218ac.)ownerships. Promoteponderosapineandwesternlarchcover

o Wherepossible,usethinningtreatmentstoreduceDouglas‐fircoverandpromoteponderosapineandwesternlarch.Thisisparticularlyvaluablewithinrelativelydrierlocationsbasedupontopographyandsoils,andcanbeusedtorestoretheabundanceandspatialpatternofwhite‐headedwoodpeckerhabitat.

Decreasedisturbancehazards.o Usethinningtreatmentsindryforeststoreducefireandinsecthazards,.

Balancethinningandwildlifehabitato Thinningofclosedcanopypatchesneedstobebalancedwiththemaintenanceof

northernspottedowlandgoshawkhabitat.Usethinningtoprotectclosedcanopywildlifehabitatsfromtransmissionoffireandinsectdisturbances.

o Duetothetransientnatureofclosed‐canopy,multi‐layeredhabitatswithinthedryandmoistforests,consideredidentifyinglandscapelocations,suchasnorthslopesandvalleybottoms,wherethesehabitatsaremostlikelytobesustainedandcanbeusedforfuturereplacementhabitat.

Increasewildlifehabitateffectivenesso Developanintegratedapproachtoaccessmanagementthatreducesoverall

effectsoftravelroutesonaquaticandterrestrialhabitats,whileprovidingaccessneededforrecreationandforestmanagement.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 39

7. RobinsonCreek

7.1RobinsonCreekTerrestrialLandscapeEvaluationTheRobinsonCreeksubwatershed(UYK_0507)is35,131acresandhassomedryforest(6,628ac.),nomoistorcoldforest,andispredominatelycoveredwithothervegetationtypes(28,551ac.).OwnershipissplitbetweenWashingtonDepartmentofFishandWildlife(WDFW,11,036ac.),WashingtonDepartmentofNaturalResources(WDNR,2,713ac.),andotherownerships(21,430ac.).HistoricalRangeofVariability(HRV)referenceconditionswerebaseduponEcologicalSubRegion(ESR)11,andFutureRangeofVariability(FRV)referenceconditionswerebaseduponESR90.Vegetation Withindryforests,theabundanceoftheyoungforestmultistory(yfms)structuralstage

isabovebothHRVandNRV. Treespeciescoverisdominatedbyponderosapine,in‐linewithHRVandNRV. Relativelylowlevelofforestvegetationcoveracrossthesubwatershedcomplicates

comparisonsofpresentdayandHRV/NRVvegetationreferenceconditions.Vegetationmeasure Current HRV FRVCover(acres)ponderosapine 6,244 1,900‐27,200 0‐22,400

StructuralStage(acres)Dryforest‐YFMS 3,596 0‐3,200 0‐3,100

WildlifeHabitat TheamountofwhiteheadedwoodpeckeriswithinHRVandFRVbutisoverly

fragmented. Theamountsofcurrentnorthernspottedowlandpotentialfuturenorthernspottedowl

habitatareatthelowendofHRVandNRVrangesandareoverlyfragmented.Wildlifemeasure Current HRV FRVHabitat(acres)whiteheadedwoodpecker 2,681 0‐5,800 0‐4,600spottedowl‐current 486 0‐6,400 0‐5,700spottedowl‐future 3,487 900‐21,600 0‐20,000

Disturbance Disturbancemeasuresincludingcrownfirepotentialandwesternsprucebudhazard

categoriesarewithinHRVandFRVranges.However,themajorityofcurrentlyforestedlandshave“high”westernsprucebudwormhabitat.

Disturbancemeasure Current HRV FRVCrownFirePotential(acres)low 33,942 14,400‐32,000 15,400‐35,100moderate 891 1,800‐12,800 0‐11,100high 346 0‐8,500 0‐7,400

TapashManastash‐TaneumLandscapeEvaluationandPrescription 40

WesternSpruceBudwormHazard(acres)low 31,070 3,200‐33,600 3,700‐35,100moderate 70 390‐9,500 0‐9,100high 4,039 1,100‐27,800 0‐24,000

7.2RobinsonCreekTerrestrialLandscapePrescription Reconnectvegetationandhabitatpatchesbasedonpatternsoftopography/soil

o Acrossthewatershed,focusonconnectingsimilarpatchesformostcover‐structureandhabitattypestoreducetototalnumberofpatchesandedgedensitiesbaseduponinherentpatternsoftopographyandsoilwithinthewatershed.

o Inparticular,focusonconnectingpatchesofwhiteheadedwoodpecker,northernspottedowlcurrent,andnorthernspottedowlpotentialfuturehabitat.

Thinningdryforestclosedcanopypatchestocreateopencanopyconditionso Withindryforest,convert2,000+acresofyfmstoopencanopyconditions

(likelytostemexclusionopencanopy,seoc)inordertoacceleratethedevelopmentofoldforestsinglestory(ofss)andtoreducedfirepotentials.Thinningmayalsoincludeclosedcanopystandinitiation(si).Prioritizethinningwherelarge(25”+dbh)ponderosapineand/orwesternlargearealreadypresent. ThinningofdryforestyfmscanincludeWDFW(2,660ac.total),WDNR

(699ac.total)ownerships. Decreasedisturbancehazards.

o Usethinningtreatmentsindryforeststoreducefireandinsecthazards,particularlyfocusingonsprucebudwormhazard.

Balancethinningandwildlifehabitato Thinningofclosedcanopypatchesneedstobebalancedwiththemaintenanceof

northernspottedowlhabitat.Usethinningtoprotectclosedcanopywildlifehabitatsfromtransmissionoffireandinsectdisturbances.

o Duetothetransientnatureofclosed‐canopy,multi‐layeredhabitatswithinthedryandmesicforests,consideredidentifyinglandscapelocations,suchasnorthslopesandvalleybottoms,wherethesehabitatsaremostlikelytobesustainedandcanbeusedforfuturereplacementhabitat.

Increasewildlifehabitateffectivenesso Developanintegratedapproachtoaccessmanagementthatreducesoverall

effectsoftravelroutesonaquaticandterrestrialhabitats,whileprovidingaccessneededforrecreationandforestmanagement.

8. MonitoringandAdaptiveManagementMonitoring and adaptive management are important components of collaborative landscape restoration (Salafsky et al. 2005, Stankey et al. 2005, Gaines and Lehmkuhl 2015, Hessburg et al. 2015). Monitoring and adaptive management provide a framework for the evaluation of how restorative aquatic and terrestrial actions add up to more resilient landscapes and watersheds (Salafsky et al. 2005). By using the terrestrial and aquatic indicators that were developed to evaluate landscape and watershed conditions, managers can periodically assess progress towards restoration across landownerships. For the Tapash Manastash-Taneum Landscape Evaluation Project, it is suggested that once land managers have developed relatively concrete ideas of

TapashManastash‐TaneumLandscapeEvaluationandPrescription 41

projects to implement the landscape prescriptions (e.g., Proposed Actions) that the landscape terrestrial and aquatic indicator metrics be re-run to assess the cumulative impacts of these projects on moving the landscapes and watersheds towards more resilient conditions. In this manner, project proposals may be modified or future projects identified so the collaborative can continue to meet or make progress towards their Mission and Objectives.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 42

LiteratureCitedAplet,G.H.,andW.S.Keeton.1999.Applicationofhistoricrangeofvariabilityconceptsto

biodiversityconservation.Pages71‐86in:R.Baydack,H.Campa,andJ.Haufler.(eds.).Practicalapproachestotheconservationofbiodiversity.IslandPress,Washington,DC.

Benda,L.,D.Miller,P.Bigelow,andK.Andras.2003.Effectsofpost‐wildfireerosiononchannelenvironments,BoiseRiver,Idaho.ForestEcologyandManagement178:105‐119.

Benda,L.E.,D.J.Miller,K.Miller[andothers].2007.NetMap:anewtoolinsupportofwatershedscienceandresourcemanagement.ForestScience53:206‐219.

Bisson,P.A.,B.E.Rieman,C.Luce,P.F.Hessburg,D.C.Lee,J.L.Kershner,G.H.Reeves,andR.E.Gresswell.2003.FireandaquaticecosystemsofthewesternUSA:currentknowledgeandkeyquestions.ForestEcologyandManagement178:213‐229.

Black,T.A.,R.M.Cissel,andC.H.Luce.2012.TheGeomorphicRoadAnalysisandInventoryPackage(GRAIP)Volume1:DataCollectionMethod.GeneralTechnicalReportRMRS‐GTR‐280WWW.USDepartmentofAgricultureForestServiceRockyMountainResearchStation,FortCollins,CO.

Bunting,S.C.;Kingery,J.L.;Hemstrom,M.A.;Schroeder,M.A.;Gravenmier,R.A.;Hann,W.J.2002.AlteredrangelandecosystemsontheinteriorColumbiaBasin.USDAForestService,PacificNorthwestResearchStation,Gen.Tech.Rep.PNW‐GTR‐553.

Churchill,D.J.,A.J.Larson,M.C.Dahlgreen,J.F.Franklin,P.F.Hessburg,andJ.A.Lutz.2013.Restoringforestresilience:Fromreferencespatialpatternstosilviculturalprescriptionsandmonitoring.ForestEcologyandManagement291:442‐457.

Cissel,R.M.,T.A.Black,K.A.T.Schreuders,A.Prasad,C.H.Luce,D.G.Tarboton,andN.A.Nelson.2012.TheGeomorphicRoadsAanlysisandInventoryPackage(GRAIP)Volume2:OfficeProcedure.GeneralTechnicalReportRMRS‐GTR‐281WWW.USDepartmentofAgricultureForestServiceRockyMountainResearchStation,FortCollins,CO.

Crow,T.R.,andE.J.Gustafson.1997.Conceptsandmethodsofecosystemmanagement:lessonsfromlandscapeecology.In:Boyce,M.S.;Haney,A.eds.EcosystemManagement:Applicationsforsustainableforestandwildliferesources.YaleUniversityPress,NewHaven,CN:54‐67.

Day,J.W.,jr.,C.A.Hall,A.Yanez‐Arancibia,D.Pimentel,C.IbanezMarti,W.J.Mitsch.2009.Ecologyintimesofscarcity.BioScience59:321‐331.

Dunham,J.B.,andB.E.Rieman.1999.Metapopulationstructureofbulltrout:influencesofphysical,biotic,andgeometricallandscapecharacteristics.EcologicalApplications9:642‐655.

Flitcroft,R.L.,J.A.Falke,G.H.Reeves,P.F.Hessburg,K.M.McNyset,andL.E.Benda.2016.WildfiremayincreasehabitatqualityforspringChinooksalmonintheWenatcheeRiversubbasin,WA,USA.ForestEcologyandManagement359:126‐140.

Furniss,M.J.,T.D.Roelofs,andC.S.Yee.1991.Roadconstructionandmaintenance.In:Meehan,W.R.ed.InfluenceofForestandRangelandManagementonSalmonidFishesandtheirHabitats.AmericanFisheriesSociety,Bethesda,Ml.SpecialPublication19:297‐323.

Furniss,M.J.,T.S.Ledwith,M.A.Love,B.C.McFadin,andS.A.Flanagan.1998.Responseofroad‐streamcrossingstolargefloodeventsinWashington,Oregon,andnorthernCalifornia.USDAForestService,SanDimasTechnologyandDevelopmentCenter,SanDimas,CA.14pp.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 43

Gaines,W.L.,D.W.Peterson,C.A.Thomas,andR.J.Harrod.2012.Adaptationstoclimatechange:ColvilleandOkanogan‐WenatcheeNationalForests.USDAForestService,PacificNorthwestResearchStation,PNW‐GTR‐862.

Gaines,W.L.andJ.F.Lehmkuhl.2015.Monitoring,AdaptiveManagement,andInformationGaps.Pages103‐125inLehmkuhl,J.,W.Gaines,D.W.Peterson,J.Bailey,andA.Youngblood.Eds.SilvicultureandMonitoringGuidelinesforIntegratingRestorationofDryMixed‐ConiferForestandSpottedOwlHabitatManagementintheeasternCascadeRange.USDAForestService,PacificNorthwestResearchStation,PNW‐GTR‐915.

Gartner,S.,K.M.Reynolds,P.F.Hessburg,S.Hummel,andS.Twery.2008.Decisionsupportforevaluatinglandscapedepartureandprioritizingforestmanagementactivitiesinachangingenvironment.ForestEcologyandManagement256:1666‐1676.

Girvetz,E.,andF.Shilling.2003.DecisionsupportforroadsystemanalysisandmodificationontheTahoeNationalForest.EnvironmentalManagement32(2):218‐233.

Grenouillet,G.A.,L.Comte.2014.Illuminatinggeographicalpatternsinspecies’rangeshifts.GlobalChangeBiology20:3080‐3091.

Haugo,R.,C.Zanger,T.DeMeo,C.Ringo,A.Shlisky,K.Blankenship,M.Simpson,K.Mellen‐McLean,J.Kertis,andS.Stern.2014.AnewapproachtoevaluateforeststructurerestorationneedsacrossOregonandWashington.ForestEcologyandManagement335:37‐50.

Hessburg,P.F.,B.G.Smith,S.D.Kreiter,C.A.Miller,R.B.Salter,C.H.McNicoll,andW.J.Hann.1999.HistoricalandcurrentforestandrangelandscapesintheinteriorColumbiaRiverBasinandportionsoftheKlamathandGreatBasins.Part1:Linkingvegetationpatternsandlandscapevulnerabilitytopotentialinsectandpathogendisturbances.USDAForestService,PacificNorthwestResearchStation,PNW‐GTR‐458.

Hessburg,P.F.,B.G.Smith,R.B.Salter,R.D.Ottmar,andE.Alvarado.2000.Recentchanges(1930s‐1990s)inspatialpatternsofinteriornorthwestforests,USA.ForestEcologyandManagement136:53‐83.

Hessburg,P.F.,andJ.K.Agee.2003.AnenvironmentalnarrativeofInlandNorthwestUnitedStatesforests,1800‐2000.ForestEcologyandManagement178:23‐59.

Hessburg,P.F.,J.K.Agee,andJ.F.Franklin.2005.DryforestsandwildlandfiresoftheinlandNorthwestUSA:contrastingthelandscapeecologyofthepre‐settlementandmoderneras.ForestEcologyandManagement211:117‐139.

Hessburg,P.F.,K.M.Reynolds,R.B.Salter,J.D.Dickinson,W.L.Gaines,andR.J.Harrod.2013.LandscapeevaluationforrestorationplanningontheOkanogan‐WenatcheeNationalForest,USA.Sustainability5:805‐840.

Hessburg,P.F.,D.J.Churchill,A.J.Larson,R.D.Haugo,C.Miller,T.A.Spies,M.North,N.A.Povak,R.T.Belote,P.H.Singleton,W.L.Gaines,R.E.Keane,G.H.Aplet,S.L.Stephens,P.Morgan,P.A.Bisson,B.E.Reiman,R.B.Salter,andG.H.Reeves.InPress.Restoringfire‐proneInlandPacificlandscapes:sevencoreprinciples.LandscapeEcology.

Isaak,D.J.,C.Luce,B.E.Rieman.2010.Effectsofclimatechangeandrecentwildfiresonstreamtemperatureandthermalhabitatfortwosalmonidsinamountainrivernetwork.EcologicalApplications20:1350‐1371.

Isaak,D.J.,S.Wollrab,D.Horan,andG.Chandler.2012.ClimatechangeeffectsonstreamandrivertemperaturesacrossthenorthwesternUSfrom1980‐2009andimplicationsforsalmonidfishes.ClimaticChange113:499‐524.

Isaak,D.J.,M.K.Young,D.E.Nagel,D.L.Horan,andM.C.Groce.2015.Thecold‐waterclimateshield:delineatingrefugiaforpreservingsalmonidfishesthroughthe21stcentury.GlobalChangeBiologydoi:10.1111/gcb.12879.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 44

Jones,J.A.,F.J.Swanson,B.C.Wemple,andK.U.Snyder.2000.Effectsofroadsonhydrology,geomorphology,anddisturbancepatchesinstreamnetworks.ConservationBiology14:76‐85.

Kane,V.R.,J.A.Lutz,C.A.Cansler,N.A.Povak,D.Churchill,D.F.Smith,J.T.Kane,andM.P.North.2015.Waterbalanceandtopographypredictfireandforeststructurepatterns.ForestEcologyandManagement338:1‐13.

Kingsolver,J.G.2009.Thewell‐temperaturedbiologist.TheAmericanNaturalist174:755‐768.

Lehmkuhl,J.F.;Lyons,A.L.;Bracken,E.;Leingang,J.;Gaines,W.L.;Dodson,E.K.;Singleton,P.H.2013.Foragecomposition,productivity,andutilizationintheeasternWashingtonCascadeRange.NorthwestScience87(3):207‐231.

Littell,J.S.,E.E.Oneil,D.McKenzie,J.A.Hicke,J.A.Lutz,R.A.Norheim,andM.M.Elsner.2010.Forestecosystems,distributions,andclimaticchangeinWashingtonState,USA.ClimateChange102:129‐158.

Luce,C.H.,andT.A.Black.1999.SedimentproductionfromforestroadsinwesternOregon.WaterResourcesResearch35:2561‐2570.

Luce,C.H.,B.E.Rieman,J.B.Dunham,J.L.Clayton,J.G.King,andT.A.Black.2001.Incorporatingaquaticecologyintodecisionsonprioritizationofroaddecommissioning.WaterResourcesImpact(May):8‐14.

Lundquist,J.D.,S.E.Dickerson‐Lange,J.A.Lutz,andN.C.Cristea.2013.Lowerforestdensityenhancessnowretentioninregionswithwarmerwinters:aglobalframeworkdevelopedfromplot‐scaleobservationsandmodeling.WaterResourcesResearch49:6356‐6370.

Lutz,J.A.,J.W.VanWagtendonk,andJ.F.Franklin.2010.Climatewaterdeficit,treespeciesranges,andclimatechangeinYosemiteNationalPark.JournalofBiogeography37:936‐950.

Mantua,N.,I.Tohver,andA.Hamlet.2009.ImpactsofclimatechangeonkeyaspectsoffreshwatersalmonhabitatinWashingtonState.In:Elsner,M.M.;Littel,J.;Binder,L.W.,eds.TheWashingtonClimateChangeImpactsAssessment.Seattle,WA:CenterforScienceintheEarthSystem,JointInstitutefortheStudyofAtmosphereandOceans,UniversityofWashington:217‐254.

Mantua,N.J.,andC.L.Raymond.2014.Climatechange,fish,andfishhabitatintheNorthCascadeRange.Pages235‐270inRaymond,C.L.,D.L.Peterson,andR.M.Rochefort,Eds.USDAForestService,PacificNorthwestResearchStation,PNW‐GTR‐892.

Medhurst,R.B.,M.S.Wipfli,C.Binckley,K.Polivka,P.F.Hessburg,andR.B.Salter.2010.Headwaterstreamsandforestmanagement:doesecoregionalcontextinfluenceloggingeffectsonbenthiccommunities?Hydrobiologia641:71‐83.

Meredith,C.,B.Roper,andE.Archer.2014.ReductionsininstreamwoodinstreamsnearroadsintheinteriorColumbiaRiverBasin.NorthAmericanJournalofFisheriesManagement34(3):493‐506.

Miller,D.,C.Luce,andL.Benda.2003.Time,space,andepisodicityofphysicaldisturbanceinstreams.ForestEcologyandManagement178:121‐140.

Mote,P.2003.TrendsinsnowwaterequivalentinthePacificNorthwestandtheirclimaticcauses.GeophysicalResearchLetters30:1601‐1604.

Naiman,R.J.,andM.G.Turner.2000.AfutureperspectiveonNorthAmerica’sfreshwaterecosystems.EcologicalApplications10:958‐970.

NationalMarineFisheriesService(NMFS).2008.MiddleColumbiaRiversteelheadrecoveryplan.Portland,OR.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 45

Polivka,K.M.,E.A.Steel,andJ.L.Novak.2015.Juvenilesalmonandsteelheadoccupancyofstreampoolstreatedandnottreatedwithrestorationstructures,EntiatRiver,Washington.CanadianJournalofFisheriesandAquaticSciences72:166‐174.

Ptyondy,J.P.,andT.W.Geier.2010.ForestServicewatershedconditionframeworktechnicalguide.USDAForestService,Washington,DC.

Reiss,K.Y.,K.Gallo,P.Dawson,D.Konnoff,andL.Croft.2008.Processforevaluatingthecontributionofnationalforestsystemlandstoaquaticecologicalsustainability.ARegionalPilotProjectconductedontheOkanogan‐WenatcheeandColvilleNationalForests.USDAForestService,PacificNorthwestRegion,Region6.Portland,OR.

Rieman,B.E.,D.J.Isaaks,S.Adams.2007.AnticipatedclimatewarmingeffectsonbulltrouthabitatsandpopulationsacrosstheinteriorColumbiaRiverbasin.TransactionsoftheAmericanFisheriesSociety136:1552‐1565.

Rieman,B.E.,P.F.Hessburg,C.Luce,andM.R.Dare.2010.Wildfireandmanagementofforestandnativefishes:conflictoropportunityforconvergentsolutions?BioScience60:460‐468.

Ruff,C.P.,D.E.Schindler,J.B.Armstrong.2011.Temperature‐associatedpopulationdiversityinsalmonconfersbenefitstomobileconsumers.Ecology92:2073‐2084.

Salafsky,N.,R.Margoluis,andK.Redford.2005.Adaptivemanagement:atoolforconservationpractitioners.Washington,DC:WorldWildlifeFund.http://www.fosoline.org/wordpress/wp‐content/uploads/2010/06/AdaptiveManagementTool.pdf.

Stankey,G.H.,R.N.Clark,andB.T.Bormann.2005.Adaptivemanagementofnaturalresources:theory,concepts,andmanagementinstitutions.USDAForestService,PacificNorthwestResearchStation,PNW‐GTR‐654.

Stephenson,N.L.1998.Actualevopotranspirationanddeficit:biologicallymeaningfulcorrelatesofvegetationdistributionacrossspatialscales.JournalofBiogeography25:855‐870.

SER.2004.TheSERinternationalprimeronecologicalrestoration,version2.SocietyforEcologicalRestorationScienceandPolicyWorkingGroup.

Stine,P.,P.Hessburg,T.Spies,M.Kramer,C.J.Fettig,A.Hansen,J.Lehmkuhl,K.O’Hara,K.Polivka,P.Singleton,S.Charnley,A.Merschel,andR.White.2014.Theecologyandmanagementofmoistmixed‐coniferforestsineasternOregonandWashington:asynthesisoftherelevantbiophysicalscienceandimplicationsforfuturelandmanagement.USDAForestService,PacificNorthwestResearchStation,PNW‐GTR‐897.

Strauch,R.L.,C.L.Raymond,andA.F.Hamlet.2015.Climatechange,hydrologyandaccessintheNorthCascadeRange.Pages48‐112inRaymond,C.L.,D.L.Peterson,andR.M.Rochefort,Eds.USDAForestService,PacificNorthwestResearchStation,PNW‐GTR‐892.

Trombulka,S.C.,andC.A.Frissell.2000.Reviewofecologicaleffectsofroadsonterrestrialandaquaticcommunities.ConservationBiology14:18‐30.

USDAForestService(USFS).2012.TheOkanogan‐WenatcheeNationalForestRestorationStrategy:adaptiveecosystemmanagementtorestorelandscaperesiliency.USDAForestService,PacificNorthwestRegion.Portland,OR.

U.S.FishandWildlifeService(USFWS).2011.RevisedRecoveryPlanforthenorthernspottedowl(Strixoccidentaliscaurina).U.SFishandWildlifeService,Portland,OR.

U.S.FishandWildlifeService(USFWS).2015.Draftmid‐Columbiarecoveryunitimplementationplanforbulltroutrecoveryplan.U.SFishandWildlifeService,Portland,OR.

TapashManastash‐TaneumLandscapeEvaluationandPrescription 46

VerHoef,J.M.,E.E.Peterson,andD.M.Theobald.2006.Spatialstatisticalmodelsthatuseflowandstreamdistance.EnvironmentalandEcologicalStatistics13:449‐464.

White,P.S.,andJ.Harrod.1997.Disturbanceanddiversityinalandscapecontext.In:Bissonette,J.A.ed.WildlifeandLandscapeEcology.Springer‐Verlag,NewYork,NY:128‐159.

Wondzell,S.M.2001.TheinfluenceofforesthealthandprotectiontreatmentsonerosionandstreamsedimentationinforestedwatershedsofeasternOregonandWashington.NorthwestScience75(SpecialIssue):128‐140.

YakimaBasinFishandWildlifeRecoveryBoard(YBFWRB).2009.Yakimasteelheadrecoveryplan.YakimaBasinFishandWildlifeRecoveryBoard.http://www.ybfwrb.org.