Magnetic Reconnection and Turbulence in Stellar-Convective ...

Post on 12-Jun-2022

5 views 0 download

Transcript of Magnetic Reconnection and Turbulence in Stellar-Convective ...

Magnetic Reconnection and Turbulence in Stellar-Convective-Zone-Relevant

Laboratory Plasmas

Jack D. Hare

MAGPIE

MAGPIE: S. V. Lebedev, L. G. Suttle, S. N. Bland, T. Clayson, J. W. D. Halliday, S. Merlini, D. R. Russell, F. Suzuki-Vidal, E. R. Tubman, V. Valenzuela-Villaseca

CERBERUS: R. A. Smith, S. Eardley, T. Robinson, N. StuartGORGON: J. Chittenden, N. Niasse

with N. F. Loureiro (MIT) and A. Ciardi (Sorbonne)

Summary

jack.d.hare@gmail.com PPPL 2020 2

Magnetic Reconnection with Plasmoids MHD Turbulence

New Diagnostics for Turbulence PUFFIN: A new pulser at MIT

Current sheet

BB

Magnetic Reconnection

3jack.d.hare@gmail.com PPPL 2020

Current sheet

BB

Magnetic Reconnection

4jack.d.hare@gmail.com PPPL 2020

Prediction: 1000 yrs. Reality: 10 minutes!

Plasmoids Lead to Fast Reconnection and Anomalous Heating

Stronglysheared flows

Multiple current sheets

Overview of recent theory:Loureiro, N. F., & Uzdensky, D. A. (2015). PPCF, 58, 014021

BB

Current sheet

5jack.d.hare@gmail.com PPPL 2020

Plasmoids Lead to Fast Reconnection and Anomalous Heating

Stronglysheared flows

Multiple current sheetsBB

Current sheet

6jack.d.hare@gmail.com PPPL 2020

The Convective Zone is a Collisional Plasma (and so is a Z-Pinch)

β€’ Collisionless: Solar Flares, MRX, TREX

7jack.d.hare@gmail.com PPPL 2020

𝐿 ≫ πœ†π‘’π‘– >𝑐

πœ”π‘π‘–β‰«

𝑐

πœ”π‘π‘’β‰«

π‘£π‘‡π‘’πœ”π‘π‘’

𝐿 ≫𝑐

πœ”π‘π‘–β‰«

𝑐

πœ”π‘π‘’> πœ†π‘’π‘– >

π‘£π‘‡π‘’πœ”π‘π‘’

β€’ Collisional: Convective zone, Z-pinch

D. D. Ryutov, IEEE TPS (2015)

Kelvinsong / CC BY-SA

Outline

β€’What is magnetic reconnection?

β€’Reconnection and Diagnostics on the MAGPIE generator

β€’Anomalous heating and the Plasmoid Instability

β€’Creating turbulence through flux tube merging

β€’Diagnostics for turbulence

β€’ The PUFFIN facility

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 8

Laboratory Reconnection Experiments

9jack.d.hare@gmail.com PPPL 2020

Reconnection Layer

Laserspot

BubbleExpansion

Magnetic Ribbon

Magnetically Driven:B=0.03 T, ne=5x1013 cm-3,

V=10 km/s, L= 10 cmTe= 10 eV, Ti= 10 eV

Ξ²th<<1, Ξ²dyn<<1Long lasting

Laser Driven:B=50 T, ne=7x1019 cm-3,V=500 km/s, L= 0.1 cm,Te= 650 eV, Ti= 250 eV

Ξ²th>>1, Ξ²dyn>>1Transient

Pulsed Power Driven:B=3 T, ne=5x1017 cm-3,V=50 km/s, L= 1 cm

Te= 100 eV, Ti= 500 eV,

βth ∼ 1, βdyn ∼ 1Long lasting

Reconnection layer

The MAGPIE Pulsed Power Generator

β€’ Constructed 1993

β€’ 4 Marx banks: 300 kJ

β€’ 1.4 MA peak current

β€’ 250 ns rise time

β€’ 1 TW into 1 cm3

MAGPIE

Load goes here

10jack.d.hare@gmail.com PPPL 2020

Lebedev et al, Rev. Mod. Phys (2019)

Plasma Source: Exploding Wire Array

jack.d.hare@gmail.com PPPL 2020 11

Current

I=1.4 MA, 240 ns rise time

Dime for scale

Plasma Source: Exploding Wire Array

jack.d.hare@gmail.com PPPL 2020 12

Current

B

V

I=1.4 MA, 240 ns rise time

Magnetic Reconnection Setup: Double Exploding Wire Arrays

1.4 MA

13

Suttle, L.G. et al. PRL 2016Hare, J. D. et al. PRL 2017Suttle, L.G. et al. PoP 2017Hare, J. D. et al. PoP 2018Hare, J. D. et al. PoP 2018

β€’ Sustained flows

β€’ Quasi-2D

β€’ Collisional

β€’ No guide field

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Magnetic Reconnection Setup: Double Exploding Wire Arrays

β€’ Sustained flows

β€’ Quasi-2D

β€’ Collisional

β€’ No guide field

Suttle, L.G. et al. PRL 2016Hare, J. D. et al. PRL 2017Suttle, L.G. et al. PoP 2017Hare, J. D. et al. PoP 2018Hare, J. D. et al. PoP 2018

14Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Overview of Diagnostic Suite

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 15

2 m

Overview of Diagnostic Suite

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 16

2 m

Diagnostic Setup

17

y

x

y

x

G. F. Swadling et al. RSI (2014)

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Diagnostic Setup

18

y

x

y

x

G. F. Swadling et al. RSI (2014)

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Diagnostic Setup

19

z

x

z

x

y

x

y

x

G. F. Swadling et al. RSI (2014)

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

End on Electron Density (Laser Interferometry)

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

y

x 20

Wires

End on Electron Density (Laser Interferometry)

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

y

x 21

End on Electron Density (Laser Interferometry)

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

y

x

A plasmoid

22

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Magnetic Field Profile (Faraday Rotation Imaging)

23

z

x

10 mm

Magnetic Field Profile (Faraday Rotation Imaging)

24

z

x Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

10 mm

Magnetic Field Profile (Faraday Rotation Imaging)

B B

25

z

x Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

𝛼(π‘₯, 𝑧) ∝ ࢱ𝑛𝑒𝑩. π‘‘π’š

B B

Magnetic Field Profile (Faraday Rotation Imaging)

Harris Sheet:

1 mm

z

x

G. F. Swadling et al. RSI (2014)

𝛼(π‘₯, 𝑧) ∝ ࢱ𝑛𝑒𝑩. π‘‘π’š

26Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Velocity and Temperature (Thomson Scattering)

27

Fibre Optic Bundle

Fibre Optic Bundle

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Overall shift: Vfi

Collective scattering from Ion Acoustic Waves

Velocity and Temperature (Thomson Scattering)

28

Fibre Optic Bundle

Fibre Optic Bundle

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

29

Fibre Optic Bundle

Fibre Optic Bundle

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Separation: ZTe

Overall shift: Vfi

Collective scattering from Ion Acoustic Waves

Velocity and Temperature (Thomson Scattering)

30

Fibre Optic Bundle

Fibre Optic Bundle

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Width: Ti

Separation: ZTe

Overall shift: Vfi

Collective scattering from Ion Acoustic Waves

Velocity and Temperature (Thomson Scattering)

31

Fibre Optic Bundle

Fibre Optic Bundle

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Width: Ti

Separation: ZTe

Overall shift: Vfi

Collective scattering from Ion Acoustic Waves

Velocity and Temperature (Thomson Scattering)

[100 km/s]

Velocity and Temperature (Thomson Scattering)

Ξ»0

32

Fibre Optic Bundle

2 mm

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Velocity and Temperature (Thomson Scattering)

Ξ»0

33

Fibre Optic Bundle

2 mm

Cold (50 eV)Fast movingΔλ=0.6 Γ…

V=50 km/s

Hot (600 eV)Stationary

Δλ

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Velocity and Temperature (Thomson Scattering)

Ξ»0

34

Fibre Optic Bundle Cs= 30 km/s, VA= 70 km/s

2 mm

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Velocity and Temperature (Thomson Scattering)

Ξ»0

35

Fibre Optic Bundle Cs= 30 km/s, VA= 70 km/s

2 mm

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Power Balance in the Reconnection Layer

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 36

π‘‰π‘–π‘›πΏβ„Ž πΈπ‘šπ‘Žπ‘” + πΈπ‘˜π‘–π‘› + πΈπ‘‘β„Ž,𝑖 + πΈπ‘‘β„Ž,𝑒 β‰ˆ π‘‰π‘œπ‘’π‘‘π›Ώβ„Ž πΈπ‘˜π‘–π‘› + πΈπ‘‘β„Ž,𝑖 + πΈπ‘‘β„Ž,𝑒~50% ~25% ~25% ~40% ~60%

2Ξ΄

2L 𝑃𝑖𝑛

π‘ƒπ‘œπ‘’π‘‘

Anomalous Heating in the Reconnection Layer

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 37

π‘‰π‘–π‘›πΏβ„Ž πΈπ‘šπ‘Žπ‘” + πΈπ‘˜π‘–π‘› + πΈπ‘‘β„Ž,𝑖 + πΈπ‘‘β„Ž,𝑒 β‰ˆ π‘‰π‘œπ‘’π‘‘π›Ώβ„Ž πΈπ‘˜π‘–π‘› + πΈπ‘‘β„Ž,𝑖 + πΈπ‘‘β„Ž,𝑒~50% ~25% ~25% ~40% ~60%

τ𝑣𝑖𝑠𝑐 β‰ˆ 800 ns

Ο„π‘Ÿπ‘’π‘  β‰ˆ 350 ns

τ𝑒π‘₯𝑝 β‰ˆ 50 ns

Classical heating is too slow:

τ𝑒π‘₯𝑝 β‰ͺ τ𝑣𝑖𝑠𝑐, Ο„π‘Ÿπ‘’π‘ 2Ξ΄

2L 𝑃𝑖𝑛

π‘ƒπ‘œπ‘’π‘‘

Anomalous Heating in the Reconnection Layer

jack.d.hare@gmail.com JPP 2020

π‘‰π‘–π‘›πΏβ„Ž πΈπ‘šπ‘Žπ‘” + πΈπ‘˜π‘–π‘› + πΈπ‘‘β„Ž,𝑖 + πΈπ‘‘β„Ž,𝑒 β‰ˆ π‘‰π‘œπ‘’π‘‘π›Ώβ„Ž πΈπ‘˜π‘–π‘› + πΈπ‘‘β„Ž,𝑖 + πΈπ‘‘β„Ž,𝑒~50% ~25% ~25% ~40% ~60%

τ𝑣𝑖𝑠𝑐 β‰ˆ 800 ns

Ο„π‘Ÿπ‘’π‘  β‰ˆ 350 ns

τ𝑒π‘₯𝑝 β‰ˆ 50 ns

Classical heating is too slow:

τ𝑒π‘₯𝑝 β‰ͺ τ𝑣𝑖𝑠𝑐, Ο„π‘Ÿπ‘’π‘ 2Ξ΄

2L 𝑃𝑖𝑛

π‘ƒπ‘œπ‘’π‘‘

Need a faster mechanism:Plasmoids?

38

Outline

β€’What is magnetic reconnection?

β€’Reconnection and Diagnostics on the MAGPIE generator

β€’Anomalous heating and the Plasmoid Instability

β€’Creating turbulence through flux tube merging

β€’Diagnostics for turbulence

β€’ The PUFFIN facility

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 39

Plasmoids Visible in Electron Density Maps

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 40

Region of enhanced density (a β€˜plasmoid’): Vy=130 km/s

Uniformity of Inflows

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 41

Uniform inflow density near layer

Magnetic Structure of Plasmoids

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 42

Magnetic Structure of Plasmoids

43jack.d.hare@gmail.com JPP 2020

β€œB-dot” probe

Magnetic Structure of Plasmoids

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 44

Magnetic Structure of Plasmoids

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 45

Magnetic Structure of Plasmoids

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 46

Magnetic Structure of Plasmoids

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 47

Plasmoids lead to fast reconnection and anomalous heating

Multiple current sheets

Overview of recent theory:Loureiro, N. F., & Uzdensky, D. A. (2015). PPCF, 58, 014021

BB

Current sheet

Plasmoid instability depends on:β€’ 𝑆 = πœ‡0𝐿𝑉𝐴/πœ‚π‘†π‘

[Lundquist number]β€’ 𝐿/𝑑𝑖

[current sheet length]

48Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Stronglysheared flows

Multiple current sheets

Regimes of the Plasmoid instability: Collisional MHD

49Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Collisional MHD

Plasmoids

PlasmoidsStronglysheared flows

Multiple current sheets

Regimes of the Plasmoid instability: The Semi-Collisional Regime

50Pulsed Power Driven Reconnection, jack.d.hare@gmail.com

Include two-fluid effects

The Semi-Collisional Plasmoid Instability

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 51

Baalrud et al. PoP 2011

Outline

β€’What is magnetic reconnection?

β€’Reconnection and Diagnostics on the MAGPIE generator

β€’Anomalous heating and the Plasmoid Instability

β€’Creating turbulence through flux tube merging

β€’Diagnostics for turbulence

β€’ The PUFFIN facility

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 52

Flux Tube Merging

53jack.d.hare@gmail.com PPPL 2020

Shading: out of plane currentBlack lines: magnetic flux surfaces

From Zhou, Y. et al. (2004). Rev Mod Phys, 76(4), 1015–1035

Flux Tube Merging

54jack.d.hare@gmail.com PPPL 2020

From Zhou, Y. et al. (2004). Rev Mod Phys, 76(4), 1015–1035

Flux Tube Merging

55jack.d.hare@gmail.com PPPL 2020

From Zhou, Y. et al. (2004). Rev Mod Phys, 76(4), 1015–1035

Anisotropy

Power Spectra

Intermittency

Pulsed-power driven Flux Tube Merging

Wire arrays produce flux tubes during initial ablation

From: Martin et al. PoP 2010

Wire cores

56jack.d.hare@gmail.com PPPL 2020

Flux tubes merge on axis to form a turbulent column

Pulsed-power driven Flux Tube Merging

57jack.d.hare@gmail.com PPPL 2020

Flux tubes

From: Martin et al. PoP 2010

Optical Self Emission: Formation of a Turbulent Column

Axial imaging

Wires

5 mm

Long lasting, confined column

58jack.d.hare@gmail.com PPPL 2020

Optical Self Emission: Formation of a Turbulent Column

Axial imaging

Wires

5 mm

59jack.d.hare@gmail.com PPPL 2020

Long lasting, confined column

Dimensionless Parameters

Wires

L = 5 mm

DimensionlessParameters

EstimatedParameters

140 nsne= 5 x 1018 cm-3

Te = 100 eVTi = 200 eVB = 5 TV = 200 km/s

Ξ»ei/L β‰ˆ 0.01Ξ² β‰ˆ 1Re β‰ˆ 2500ReM β‰ˆ 250Pr < 0.1

60jack.d.hare@gmail.com PPPL 2020

Axial Interferometry shows cellular structures

Wires

s0327_185 mm

355 nm laser probing: 200 ns after current startCellular structures

61jack.d.hare@gmail.com PPPL 2020

Side on Shadwography shows cellular structures

62jack.d.hare@gmail.com JPP 2020

Long lasting, confined column

Cellular turbulentstructures

Imploding Wire Array

Outline

β€’What is magnetic reconnection?

β€’Reconnection and Diagnostics on the MAGPIE generator

β€’Anomalous heating and the Plasmoid Instability

β€’Creating turbulence through flux tube merging

β€’Diagnostics for turbulence

β€’ The PUFFIN facility

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 63

B

V

Pulsed Power Driven Turbulence, jack.d.hare@gmail.com 64

A simple experiment: Plasma flow into a planar obstacle

Imaging Refractometry: Density Fluctuations

65jack.d.hare@gmail.com PPPL 2020

Flow

https://arxiv.org/abs/2007.04682

Flow into planar obstacle

B

Imaging Refractometry: Density Fluctuations

66jack.d.hare@gmail.com PPPL 2020

Flow

https://arxiv.org/abs/2007.04682

Flow into planar obstacleReverse shock forms

B

Planar shock experiment: Aluminium, stable

67jack.d.hare@gmail.com PPPL 2020

Flow

https://arxiv.org/abs/2007.04682

Flow into planar obstacleReverse shock forms

Planar shock experiment: Tungsten, Turbulent

68jack.d.hare@gmail.com PPPL 2020

Flow

https://arxiv.org/abs/2007.04682

Flow into planar obstacle???? forms

New Diagnostics: Imaging Refractometer

69jack.d.hare@gmail.com PPPL 2020

New Diagnostics: Imaging Refractometer

70jack.d.hare@gmail.com PPPL 2020

New Diagnostics: Imaging Refractometer

71jack.d.hare@gmail.com PPPL 2020

Ray d

eflection

angle (m

rad)

30

-30

Space

0

72jack.d.hare@gmail.com PPPL 2020

Flow

Planar shock experiment: Tungsten, Turbulent

Flow

https://arxiv.org/abs/2007.04682

Flow

Planar shock experiment: Tungsten, Turbulent

Space 73jack.d.hare@gmail.com PPPL 2020

Flow

https://arxiv.org/abs/2007.04682

Ray d

eflection

angle (m

rad)

30

-30

0

Measuring the Spectrum of Deflection Angles

Undeflected raysDeflected rays

74jack.d.hare@gmail.com PPPL 2020

Flow

0.8 0.6 0.4 0.2Intensity (a.u.)

Flow

https://arxiv.org/abs/2007.04682

Ray d

eflection

angle (m

rad)

30

-30

0

Measuring the Spectrum of Deflection Angles

Undeflected raysDeflected rays

L

n

n

n

Ln

cr

e

cr

e

22

1

=

FWHM D β‰ˆ 0.75 degrees

Spatialscale

Deflectionangle

Need a theory to link distribution of total deflection angles to the spectrum of density fluctuations

Random walk -> Gaussian

75jack.d.hare@gmail.com PPPL 2020

Flow

0.8 0.6 0.4 0.2Intensity (a.u.)

https://arxiv.org/abs/2007.04682

Ray d

eflection

angle (m

rad)

30

-30

0

Measuring the Spectrum of Deflection Angles

Undeflected raysDeflected rays

L

n

n

n

Ln

cr

e

cr

e

22

1

=

FWHM D β‰ˆ 0.75 degrees

Spatialscale

Deflectionangle

Need a theory to link distribution of total deflection angles to the spectrum of density fluctuations

Random walk -> Gaussian

But - deflection spectrum notGaussian!

76jack.d.hare@gmail.com PPPL 2020

Flow

0.8 0.6 0.4 0.2Intensity (a.u.)

https://arxiv.org/abs/2007.04682

Ray d

eflection

angle (m

rad)

30

-30

0

Faraday Rotation Imaging: Out of Plane Magnetic Fields

77

No axial fields in inflowsAxial interferometry

Out of planefields

Local measurements from Thomson Scattering

78

Ion Feature:Collective scattering, 28-points

Electron Feature:Collective and non-collective scattering

Probebeam

Bulk Flow,Electron and iontemperatures

Electron temperature,density

jack.d.hare@gmail.com PPPL 2020

Outline

β€’What is magnetic reconnection?

β€’Reconnection and Diagnostics on the MAGPIE generator

β€’Anomalous heating and the Plasmoid Instability

β€’Creating turbulence through flux tube merging

β€’Diagnostics for turbulence

β€’ The PUFFIN facility

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 79

Long drive times required to study instabilities and turbulence

80jack.d.hare@gmail.com JPP 2020

Flux tube mergingPlasmoid Instability

5 mm

Wires

5 mm

Pulsed Power Driven Reconnection, jack.d.hare@gmail.com 81

Emperor Penguin:

4 ft/1.2 m

1.5 MA peak current, 1.5 Β΅s rise time

[MAGPIE: 1.4 MA, 0.25 Β΅s]

Starting January 2021 at MIT

Instabilities and turbulence need time to develop.

Vacuum coaxtransmission lines

Vacuum chamber

PUFFIN: A long drive pulser for fundamental plasma physics

Conclusions

β€’ Reconnection and turbulence in collisional HED plasmas

β€’ Sub-AlfvΓ©nic reconnection, anomalous heating, plasmoid unstable

β€’ Magnetised turbulence with Pr < 1, 𝛽 ∼ 1

β€’ New diagnostics to study turbulence in unprecedented detail

β€’ PUFFIN: a new long drive pulser for magnetised HED plasmas at MIT

jack.d.hare@gmail.com PPPL 2020 82