Magnetic field amplification and electron acceleration by a mildly relativistic oblique shock.

Post on 23-Jun-2015

69 views 3 download

Tags:

Transcript of Magnetic field amplification and electron acceleration by a mildly relativistic oblique shock.

Magnetic field amplification and electron acceleration to near ion energy equipartition

from a mildly quasi-parallel relativistic shock Gareth Murphy(1), Mark Dieckmann(2), Luke Drury(1)

1. Dublin Inst for Advanced Studies, 2. Univ. of Linkoping

0 2000 4000 6000 80000

100

200

300

400log(!), Time = 16000"t

0.0 0.6 1.3 1.9 2.5 3.2 3.8

0 2000 4000 6000 8000-1.0

-0.5

0.0

0.5

Ion Phase Space, Time = 16000!t

0.3 1.1 1.9 2.7 3.4 4.2 5.0

Motivation

• Explore the formation of mildly relativistic shocks at kinetic level with PIC simulations

• How is non-thermal radiation produced?

• How does a quasi-parallel field affect shock formation?

GRB internal shock

• When fast blobs meet slow blobs

• Internal shock

• Emission of Gamma rays

• Synchrotron (jitter) radiation implies fast electrons and large magnetic fields

Numerical Method

• Particle In Cell (PIC) Simulations

• Plasma Simulation Code (PSC; Ruhl et al 2003)

• MPI-Parallel

Problem setup

• 0.9c collision speed

• Density ratio of 10

• Ion/electron mass ratio of 250

• Quasi-parallel magnetic field

• 100 CP’s per cell

• 18,000 x400 cells in 2D

1D structure

0 200 400 600 800 10000

50

100

150

200Electron Phase Space, Time = 25000!t

0.3 0.9 1.5 2.1 2.7 3.3 3.9

Electron phase space

• Gamma of ~ 100 for a tenuous population of electrons 0 2000 4000 6000 8000

0

50

100

150

Electron Phase Space, Time = 16000!t

0.3 1.2 2.1 3.0 3.9 4.8 5.7

Ion phase space

• Ions accelerated by longitudinal electric field

• Shock drift acceleration 0 2000 4000 6000 8000-1.0

-0.5

0.0

0.5

Ion Phase Space, Time = 16000!t

0.3 1.1 1.9 2.7 3.4 4.2 5.0

Ion density -filamentation

0 2000 4000 6000 80000

100

200

300

400log(!), Time = 16000"t

0.0 0.6 1.3 1.9 2.5 3.2 3.8

0 2000 4000 6000 80000

100

200

300

400log(!), Time = 16000"t

0.0 0.8 1.6 2.3 3.1 3.9 4.7

Filaments

Magnetic bubbles

Integrated density structure

0 2000 4000 6000 80000

200

400

600

800

1000Left-moving ionsRight-moving ionsLeft-moving electronsRight-moving electrons

Right Moving Ions

Left Moving Ions

Electron Density

0 2000 4000 6000 80000

100

200

300

400log(!), Time = 16000"t

0.0 0.8 1.5 2.3 3.0 3.8 4.5

0 2000 4000 6000 80000

100

200

300

400log(!), Time = 16000"t

0.0 0.7 1.4 2.1 2.9 3.6 4.3

Magnetic Bubbles

Magnetic Field

• Peak from gradient in convection (u x B) electric field.

• Drift current

• Magnetic bubbles - formation observed in lab plasmas but not in astrophysical context

2D Magnetic Pressure

0 2000 4000 6000 80000

100

200

300

log(B2), Time = 16000!t

-3.1 -2.2 -1.2 -0.3 0.6 1.6 2.5

Integrated Magnetic Pressure

B2

0 2000 4000 6000 8000

0.5

1.0

1.5

2.0

Peaks at shock frontCompression of magnetic field

Conclusions

• Filamentation at the shock front

• Field amplification in excess of that expected from compression alone.

• Electron acceleration to near energy-equipartition with ions.

• Expect significant synchotron (jitter) radiation

Future Work

• 3D Simulations

• Transient Shock

Obrigado!

0 2000 4000 6000 80000

100

200

300

log(!), Time = 18000"t

0.0 0.6 1.3 1.9 2.5 3.2 3.8

0 2000 4000 6000 80000

100

200

300

log(B2), Time = 16000!t

-3.1 -2.2 -1.2 -0.3 0.6 1.6 2.5

0 2000 4000 6000 80000

50

100

150

Electron Phase Space, Time = 16000!t

0.3 1.2 2.1 3.0 3.9 4.8 5.7

0 2000 4000 6000 8000-1.0

-0.5

0.0

0.5

Ion Phase Space, Time = 16000!t

0.3 1.1 1.9 2.7 3.4 4.2 5.0