Liquid surface studied by particle spectroscopy

Post on 13-Jan-2016

29 views 0 download

description

Liquid surface studied by particle spectroscopy. Preparation of liquid surface. NICISS = Neutral Impact Collision Ion Scattering Spectroscopy. MIES = Metastables Induced Electron Spectroscopy. NICISS (=Neutral Impact Collision Ion Scattering Spectroscopy). concentration depth profile. - PowerPoint PPT Presentation

Transcript of Liquid surface studied by particle spectroscopy

Liquid surface studied by particle spectroscopy

Preparation of liquid surface

MIES = Metastables Induced Electron Spectroscopy

NICISS = Neutral Impact Collision Ion Scattering Spectroscopy

NICISS (=Neutral Impact Collision Ion Scattering Spectroscopy)

Principle:

concentration depth profile

Formamide Surface

Valence orbitals

He+, 4.5keVNICISS He+, 4.5keV-Eloss

Formamide Surface

Valence orbitals

He+, 4.5keVNICISS He+, 4.5keV-Eloss -E

TBPBr /FA (tetrabutylphosphonium bromide in formamide)

NICISS (=Neutral Impact Collision Ion Scattering Spectroscopy)

CNO

PBr

0

5000

10000

15000

2 3 4 5 6 7 8

TOF [µs]

inte

nsity

[co

unts

/h/n

A]

solvent

0.01 molal

0.03 molal0.05 molal

0.20 molal0.41 molal

1.50 molal

Solution of Tetrabutylphosphonium Bromide in Formamide

0

1000

2000

3000

4000

5000

6000

4.0 4.5 5.0 5.5 6.0 6.5 7.0TOF [µs]

inte

nsi

ty [

cou

nts

/nA

/h]

spectrum of formamide

back groundsputtered hydrogen

fit to the back ground

oxygen step

-5

0

5

10

15

20

25

30

-30 -20 -10 0 10 20 30 40

depth [Å]

conc

ent

ratio

n [1

0-3

mo

l/cm

3 ]

measurement

Gibbs dividing plane

NICISS (=Neutral Impact Collision Ion Scattering Spectroscopy)

NICISS (=Neutral Impact Collision Ion Scattering Spectroscopy)

0

500

1000

1500

2000

2500

3000

3 3.5 4 4.5 5 5.5TOF [µs]

inte

nsi

ty [

cou

nts

/h/n

A]

solution

pure solvent

back ground of the solution ( x )

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-30 -20 -10 0 10 20 30 40 50 60 70depth [Å]

con

cen

trat

ion

[10

-3m

ol/c

m3] Reihe1

Reihe2

Bu4P+

Br-

POPC in HPN

POPC (=1-Palmitoyl-2-Oleoyl-SN-Glycero-3-Phosphocholine)

HPN (=3-hydroxipropionitrile)

POPC in HPN

30

34

38

42

46

1.E-05 1.E-04 1.E-03 1.E-02

cPOPC [mol·kg-1]

[

mN

·m-1

]

0.0E+00

5.0E-11

1.0E-10

1.5E-10

2.0E-10

2.5E-10

1.0E-06 1.0E-05 1.0E-04 1.0E-03

cPOPC [mol·kg-1]

Ge

PO

PC [

mo

l/cm

2]

from surface tension

from NICISSsolute

excsolute dd G

solute

solute

soluteexcsolute

fdcd

adTR

d

lnln

ln

G

POPC in HPN

Activity coefficient of POPC below CMC

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05 1.00E-04 1.20E-04 1.40E-04 1.60E-04

cPOPC [mol/kg]

solutesoluteexcsolute

fdcdTR

dlnln

G

POPC in HPN

Evaluation of the chemical potential of POPC for all concentrations

POPC / HPNchem. Potential normalized to zero at lowest POPC-concentration

y = 2239.2Ln(x) + 26210

R2 = 0.9747

0.E+00

1.E+03

2.E+03

3.E+03

4.E+03

5.E+03

6.E+03

7.E+03

8.E+03

9.E+03

1.E+04

0.E+00 2.E-04 4.E-04 6.E-04 8.E-04 1.E-03 1.E-03 1.E-03 2.E-03 2.E-03 2.E-03

nominal concentration [mol/kg]

chem

pot

entia

l [Jo

ule/

mol

]

excsolute

solute

dd

G

POPC in HPN. Evaluation of the chemical potential of POPC.

Logarithmic plot demonstrates ideal behavior in pre-micellar range

POPC / HPNchem. Potential normalized to zero at lowest POPC-concentration

y = 2239.2Ln(x) + 26210

R2 = 0.9747

0.E+00

1.E+03

2.E+03

3.E+03

4.E+03

5.E+03

6.E+03

7.E+03

8.E+03

9.E+03

1.E+04

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

nominal concentration [mol/kg]

che

m p

ote

ntia

l [Jo

ule

/mo

l]

Pt clusters, embedded in IL

M rho [g/cm^3] n [mol]

Pt 195.1 19.77 6.15E-05

Polyvinylpyrrolidon 111.42 1.2 6.15E-04

BDiMIm 302.32 1.4 6.60E-04

CD3OD 36 0.847 1.65E-02

Sample from DC Knapp, Dr. Müller, Prof. Lercher, TU München

Polyvinylpyrrolidon Monomer Trimer

NO

H

HH

HH HH

H

H

NO

H

HH

HH HH

H

H

NO

H

HH

HH HH

H

HH H

NO

H

H

H

HH

HH HH

Pt clusters, embedded in IL

M rho [g/cm^3] n [mol]

Pt 195.1 19.77 6.15E-05

Polyvinylpyrrolidon 111.42 1.2 6.15E-04

BDiMIm 302.32 1.4 6.60E-04

CD3OD 36 0.847 1.65E-02

Sample from DC Knapp, Dr. Müller, Prof. Lercher, TU München

BDiMIm= Butyl Dimethyl Imidazolium Triflat

F

F

F

S-

O

OO

NN

C+

HH

H

H

HH

H H

HH

H H

H

Pt clusters, embedded in IL

13.9 m

solution from Dr. Müller

M rho [g/cm^3] n [mol]

Pt 195.1 19.77 6.15E-05

Polyvinylpyrrolidon 111.42 1.2 6.15E-04

BDiMIm 302.32 1.4 6.60E-04

CD3OD 36 0.847 1.65E-02

1.8 m

Preparation of thick layer:

spreading of 30 L on 4.8cm2

Preparation of thin layer:

dissolving in 8-fold amount of methanol &

spreading of 30L on 4.8cm2

Pt clusters, embedded in IL NICISS

Pt

Pt

S

S

F

F

O

O

N

N

C

C

-500

0

500

1000

1500

2000

2500

3000

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

I korr1 (t)

selection for f it

H-recoil

steps

recoil & steps

13.9 m, 84°

Pt clusters, embedded in IL NICISS

1.8 m, 84°

Pt

Pt

S

S

F

F

O

O

N

N

C

C

-500

0

500

1000

1500

2000

2500

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

I korr1 (t)

selection for f it

H-recoil

steps

recoil & steps

Pt

-50

0

50

100

150

200

250

300

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

TOF [s]

cou

nts

Pt 78°

Pt 68°

Pt 58°

Pt 48°

Pt 38°

Pt 28°

Pt 18°

Pt clusters, embedded in IL NICISS

1.8 m

Pt

Pt

S

S

F

F

O

O

N

N

C

C

-500

0

500

1000

1500

2000

2500

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

I korr1 (t)

selection for f it

H-recoil

steps

recoil & steps

Pt

-100

0

100

200

300

400

500

600

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

TOF [s]

cou

nts

Pt 78°

Pt 68°

Pt 58°

Pt 48°

Pt 38°

Pt 28°

Pt 18°

Pt clusters, embedded in IL NICISS

Pt

Pt

S

S

F

F

O

O

N

N

C

C

-500

0

500

1000

1500

2000

2500

3000

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

I korr1 (t)

selection for f it

H-recoil

steps

recoil & steps

13.9 m

model consideration NICISS

surface

depth

surface

depth

model consideration NICISS

surface

depth

model consideration NICISS

surface

depth

model consideration NICISS

surface

depth

model consideration NICISS

surface

depth

model consideration NICISS

surface

depth

model consideration NICISS

surface

depth

model consideration NICISS

surface

depth

model consideration NICISS

surface

depth

model consideration NICISS

Pt

-100

0

100

200

300

400

500

600

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

TOF [s]

cou

nts

Pt 78°

Pt 68°

Pt 58°

Pt 48°

Pt 38°

Pt 28°

Pt 18°

Pt clusters, embedded in IL NICISS

13.9 m

Pt

-50

0

50

100

150

200

250

300

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

TOF [s]

cou

nts

Pt 78°

Pt 68°

Pt 58°

Pt 48°

Pt 38°

Pt 28°

Pt 18°

1.8 m

sample of Pt clusters, embedded in IL, goniographic NICISS

13.9 m 1.8 m

58°

-100

0

100

200

300

400

500

600

0 50 100 150 200

Fit

from exp.

78°

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Reihe1

Reihe2

5%

70%

Pt concentration in bulkPt clusters

Pt atoms? percentage of this fraction is evaluated from 3D model

thin layer (~0.8nm) IL