Limits of accuracy andLimits of accuracy and improvements ... · Limits of accuracy andLimits of...

Post on 16-Sep-2018

231 views 0 download

Transcript of Limits of accuracy andLimits of accuracy and improvements ... · Limits of accuracy andLimits of...

Limits of accuracy andLimits of accuracy and improvements on the

Centrede coopérationinternationaleen recherche

pHVI cotton fiber test

agronomiquepour ledéveloppement Cotton, from the plant

t th fi l d tJean-Paul Gourlot

to the final productJean Paul Gourlot

Cirad-ca, Cotton Technology Laboratory

Plan of presentation

• Introduction• Different ways of fibers characterization• A point about the standardization processp p• How does work an HVI• An example of relation between fiber and• An example of relation between fiber and

yarn qualityC l i• Conclusions

2

Cotton plant cycle

60 d60 days

37 days 55 days

Cotton plant growth

FromCirad

‘C ’‘Cotons’software

4

Harvesting and ginning

Cotton ginningCotton bolls harvest

R llRoller

5Saw

Statistics and economy

40 700

303540

600

700Surface

(millions ha)

202530

400

500( )

Yield(kg/ha)

101520

200

300

510

100

200World production(millions of tons)

0

24/25

30/31

36/37

42/43

48/49

54/55

60/61

66/67

72/73

78/79

84/85

90/91

96/97

02/03

0( )

6

1924

1930

1936

1942

1948

1954

1960

1966

1972

1978

1984

1990

1996

2002

Cotton cycle* (1/3)

Seeds * From GOURLOT J.-P. et al 1999, R h h t dé l t

SowingRecherche et développement en

technologie : mesurer et améliorer la qualité des produits du cotonnier,

créer de nouveaux débouchés, A i lt t dé l t

Cropping (IPM, fertilizers …)Agriculture et développement,

n°22, Juin 1999, ISSN 1249-9951, pp. 90-113.

Harvesting

Gi i

Commercial parametersLength, Length unif, StrengthGinning

Seeds Fibers

g , g , gGrade, Micronaire

Average and variabilitySeeds Fibers

Bales Samples for quality controlOil7Grouping / quality Marketing

OilFlour, …

Cotton cycle (2/3)

Opening / cleaning / mixing Strength fineness

CardOther fibers

Strength, fineness,Maturity, Length,

Length unif., pollutions

Drawing frame

St th fi

g pAverage, and variability

Ring spinning Rotor spinning

Y l i

Strength, fineness,Maturity, Length,

Length unifYarn cleaning

Preparation to weaving Yarn strength and eveness

Length unif.,pollutions

Preparation to weaving

Weaving

Knitting

M t it

Yarn strength and evenessSCF, yarn imperfections

8

g

Dying / Finishing / ClothingMaturity

Easy care

Cotton cycle (3/3)SeedsSowing

Harvesting

Cropping (IPM, fertilizers …)

GinningCommercial parameters

Length, Length unif, Strength

Seeds FibersBales Quality control

g

OilFl

Grade, MicronaireAverage and variability

Opening/cleaning/mixing Strength, fineness,

Grouping / quality MarketingFlour, …

Card

Drawing frame

Other fibers Maturity, Length,Length unif., pollutions

Average, and variabilityg

Ring spinning Rotor spinning

Yarn cleaning

Strength, fineness,Maturity, Length,

Length unif.,Yarn cleaning

Preparation to weaving KnittingYarn strength and eveness

SCF, yarn imperfections

g ,pollutions

9Weaving

Dying / Finishing / ClothingMaturity

Easy care

SCF, yarn imperfections

Fiber quality development

30 6Length

25

30

nd

n) 5

6

cron

s)

Perimeter

LengthPrimary wall

15

20

mm

) an

r(m

icro

3

4

ess

(micPerimeter

10

15

Len

gth

(ia

met

er

2

3

l thi

ckne

Maturity

0

5L di

0

1

Wal

lMaturity

Secondary wall00 10 20 30 40 50 60

Age of the boll (days)

0

10

g ( y )

Fiber constitution

C tit t P tConstituants Percentage

Cellulosis 95.0Cellulosis 95.0

Proteins 1.6

Waxes 0.9

Physiological sugars 0.3

Other 2 2Other 2.2

11

Fiber quality measurement

length

Measured

perimeteror fineness Wall thickness

ior maturity

‘Micronaire’Mike, IM Color + contaminants

Tensile behavior12

, Tensile behavior

Fiber quality measurement

Could be measured• Cellulose types• Wax content• Flexion / flexibility• ‘Curling’ / crimp

SpiralReversals13

Spiral ...Reversals

Plan of presentation

• Introduction• Different ways of fibers characterization• A point about the standardization processA point about the standardization process• How does work an HVI• An example of relation between fiber and

yarn qualityyarn quality• Conclusions

14

Fiber quality measurement

Why do we measure length ?

Define what type of final product will be made out of the fibers

length

Check the settings of ginning equipmentsDefine a commercial price of the fibersAllow settings of the processing equipments

15

Fiber quality measurement

Manual :

pulling => commercial lengthlength

comb sorter => length diagrams (W, N)=> ML, CV%, SFC Could be measured

16

Fiber quality measurement

Instrumental :Instrumental :with classical instruments :

Fibrograph => SL2 5% SL 50% UR%Fibrograph => SL2.5%, SL 50%, UR%Almeter 101 => diagrams (W, N) => ML CV% SFC

length

=> ML, CV%, SFC

17

Fiber quality measurement

Instrumental :Instrumental :with classical instruments :

Fibrograph => SL2.5%, SL 50%, UR%Almeter 101 => diagrams (W, N) => ML, CV%, SFC

length

with High Volume Instrument (HVI)=> UHML, ML, UI%, SFI, , ,

18

Fiber quality measurement

Instrumental :with classical instruments :

Fibrograph => SL2.5%, SL 50%, UR%Almeter 101 => diagrams (W N)Almeter 101 => diagrams (W, N) => ML, CV%, SFC

with High Volume Instrument (HVI)

length

=> UHML, ML, UI%, SFI

with Advanced Fiber Information System (AFIS)(AFIS)length (W, N)=> ML, CV, UQL, SFC

19

Fiber quality measurementLength histograms on 2 seeds (AFIS)Length histograms on 2 seeds (AFIS)

20

161820

121416

Seed 1Seed 2

68

10%

246

02

4 8 12 16 20 24 28 32 36 40 44

20Lengh group (mm)

Mean and variability parameters

Fiber quality measurementLength diagram (AFIS)Length diagram (AFIS)

100

8090

100Diagram

607080

304050%

102030

010

4 8 12 16 20 24 28 32 36 40 44

21Lengh group (mm)

Fibre length Part of the optical sensorPart of the optical sensor

Capteurpoptique

22

Fiber quality measurementLength FibrogramLength Fibrogram

100

8090

100Fibrogram

506070

%

203040

01020

4 8 2 6 0 4 8 2 6 0 44 8 12 16 20 24 28 32 36 40 44

Lengh group (mm)Mean Length Upper Half ML

23Uniformity Index % = ML . 100UHML

Fiber quality measurementLength FibrogramLength Fibrogram

100

8090

100Fibrogram

506070

%

203040

01020

4 8 2 6 0 4 8 2 6 0 44 8 12 16 20 24 28 32 36 40 44

Lengh group (mm)SL 2.5 %SL 50 %

24UR% = SL 50 % . 100SL 2.5 %

Fiber quality measurementLength parametersLength parameters

SL 2.5 ~ UHML ~ Pulling22 – 40 mm

SL 50 % <> ML10 – 18 mm 18 – 30 mm

UR % <> UI %38 – 50 % 78 – 85 %

25

Fiber quality measurement

Why do we measure Fineness and Maturity ?

i t Predict the number of fibers per yarn cross-section

perimeter

=> yarn strength and evenessChemical treatments and dye consumptionwall thicknessDye uptake ability

26

Fiber quality measurement

Manual :perimeter

using microscope on longitudinal fibers

using microscope on fibers sectionswall thickness

27

Fiber quality measurement

Manual :Manual :with classical instruments

Fibronaire => Micronaireperimeter

wall thickness

28

Fiber quality measurement

Manual :Manual :with classical instruments

Fibronaire => MicronaireFibronaire Micronaire

with Fineness Maturity Tester (FMT)perimeter

with Fineness Maturity Tester (FMT)IM, MR, PM%, H, HS

wall thickness

29

Fiber quality measurement

Manual :Manual :with classical instruments

Fibronaire => MicronaireFibronaire Micronairewith Fineness Maturity Tester (FMT)

IM, MR, PM%, H, HSperimeter

with High Volume Instrument (HVI)wall thickness

Micronaire

30

Fiber quality measurement

Manual :Manual :with classical instruments

Fibronaire => Micronaireith Fi M t it T t (FMT)with Fineness Maturity Tester (FMT)

IM, MR, PM%, H, HSwith High Volume Instrument (HVI)

perimeterg ( )

Micronaire

i h Ad d Fib I f iwall thickness

with Advanced Fiber Information System (AFIS)Di t ib ti f Di tDistribution of Diameter,Theta, MR, H

31

Fiber quality measurement

Recorded results:Recorded results:IM : micronaire [2, 7]MR : Maturity Ratio [0, 1.2]PM% : Percent Mature fibers [0, 100]

perimeter[ ]

H : Linear Fineness (mtex) [120, 350]Hs : Standard Fineness (mtex) [120 400]wall thickness Hs : Standard Fineness (mtex) [120, 400]

Hs = H (tex = grams/1000 m)MR

32

Micronaire, maturity and fineness

Fine Large

M tperimeter

Mature

wall thickness

Immature

=> Some combinaisons of MR and H d t l IM f

33correspond to close IM for very

different fibres

Micronaire, maturity and fineness

IM = 4 1IM = 4.1

perimeter

wall thickness

MR = 1.04H = 150

MR = 0.67 H = 220H 150

Hs = 144H 220

Hs = 328

34

Fiber quality measurement

perimeter

wall thickness

35

Relation between IM, MR and Hs

1 2Hs=120 140 160 180 200 220MR

1.1

1.2 240260300

Fine

0 9

1.0300

0.8

0.9

Coarse0.7 (Variety dependent)

0.5

0.6

IM362.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MR² =(3.86 x IM² + 18.16 x IM + 13) / Hs PM = (MR - 0.2) x (1.565 - 0.471 x MR) x 100

IM

Relation between IM, MR and Hs

1 2Hs=120 140 160 180 200 220MR

1.1

1.2 240260300

0 9

1.0300

Acceptable maturity range

0.8

0.9p y g

0.7 Premium range

0.5

0.6

IM372.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

IM

Relation between IM, MR and Hs

1 2Hs=120 140 160 180 200 220MR

1.1

1.2 240260300

0 9

1.0300

0.8

0.9

0.7 Growing conditions problems induce

0.5

0.6problems induce

lower MR and lower IM

IM382.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

IM

Fiber quality measurement

Why do we measure color and trash ?

• To identify bales having homogeneous characteristics and group them per lot

• To avoid variations in color in raw and dyed fabrics

• To limit wastes during processing

39

Fiber quality measurement

Pressure plate

Gl t

Cotton Sample

Glass support

Light bulbsfl h li htor flash light

40Yellowness

+ bReflectance

Rd %Image

analysis …

Fiber qualityFiber qualitymeasurement

41

Fiber quality measurementTrashmeter imageTrashmeter image

Grey level

67123

012345672345678910

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

1 7 7 7 6 6 6 7 72 7 7 6 6 6 6 7 62 7 7 6 6 6 6 7 63 7 7 6 7 5 4 7 64 7 7 4 5 4 3 6 65 7 6 3 2 0 2 5 56 7 6 3 1 0 4 5 5

42Binarisation and threshold applied …

6 7 6 3 1 0 4 5 57 7 7 4 2 6 6 7 7

Fiber quality measurementTrashmeter imageTrashmeter image

8 i l8 pixels considered

t h

78

as trash particle

45678

45

67

01234

1 2 3 4 5 6 7 8 9 1 12

3

1 2 3 4 5 6 7 8 9 1

Trash count Trash area Leaf Leaf grade43

Trash count, Trash area, Leaf, Leaf grade

Fiber quality measurement

Why do we measure strength ?

• To define what product can be made from these fibers

• To define a commercial price

• To predict yarn strength

44

Fiber quality measurement

Manual :Manual :with classical instruments

Stelometer : T1 (cN/tex) and elongation E1 (%)Stelometer : T1 (cN/tex) and elongation E1 (%)

with High Volume Instrument (HVI)with High Volume Instrument (HVI)Strength (cN/tex) and elongation Elong (%)

with devices measuring individual fibersBreaking force and elongationg g

45

Fibrogram curve

100 % of fibers

Strength (g/tex) = Force x KFibrogram

80

100 % of fiberse

Strength (g/tex) = Force x K Estimated weigth

60

ping

zon

e

1/8° inch

40

Force

Cla

mp

20

jaws0

Fiber length

46

Fibrogram curve after a break

100 % of fibers

80 Strength (g/tex) = Force x K E ti t d i ht

60

ne

Estimated weight

40

ping

zon f(nb de fibres et IM)

20 Cla

m

jaws

0Fiber length

47

Caractérisation de la fibre

Les principales caractéristiques de fibre peuvent êtreétablies soit manuellement, soit sur appareilsclassiques ou soit sur chaînes HVI.

Seules les chaînes HVI :permettent des mesures instrumentalespermettent des mesures instrumentales,

automatisées, rapides et intégrées des critèrescommerciauxcommerciaux,

et autorisent un classement balle à balle surl ’ bl d itè

48

l ’ensemble de ces critères

Fibre quality per spinning method

Rank Ring spinning Open end Air-jet

1 L th St th L th1 Length Strength Length

2 Strength Fineness Trash2 Strength Fineness Trash

3 Fineness Length Finenessg

4 Trash Trash Strength

49Deussen, 1992

Fiber quality measurement

Length

Micronaire

Length

Length uniformityMicronaire Length uniformity

StrengthColor Strengthand moreTrash content

Example of ITC(Thi di l d t tit t t f d ti f thi i t

50

(This display does not constitute any type of recommendation for this equipment, picture from an advertisement from Uster Technologies)

Example of HVI classification in Dumas (AK)(AK)

51

Fiber quality measurement

Actual major manufacturers of so-call HVI i t ( l h b ti d )equipments (alphabetic order)

- Lintronics (Israel)- Premier (India)- Schaffner Technologies (USA)Schaffner Technologies (USA)- Zellweger Uster (USA)

52

Fiber quality measurement

Number of HVI equipments

1400

800

1000

1200

400

600

800

0

200

400

19801981

19821983

19841985

19861987

19881989

19901991

19921993

19941995

19961997

19981999

Y

0

53

Year

From Hunter, 2000

Fiber quality measurement

High Volume Instrument (HVI) in the world

North America46.9%

Total = 883 HVI

Australia1.6%

C t S th

Middle East

Cent., South America

7.4%Far East23.3%

AfricaEuropa15 2%

Middle-East1.8%

54Source : HUNTER L., ITMF Committee, Brème, Mars 1994.3.9%

15.2%

Plan of presentation

• Introduction• Different ways of fibers characterization• A point about the standardization processA point about the standardization process• How does work an HVI• An example of relation between fiber and

yarn qualityyarn quality• Conclusions

55

Normalization steps

1923

1940-1950International Calibration

1923Universal Standards :

Grade, Pulling ;Transactions International Calibration

Cotton Standards (ICCS) ;Research + Transactions.

Transactions .

1986HVI Calibration Cotton ; 1995/1998

Transactions, USA. - ICCS restricted for research ;

- HVI Calibration Cotton HVI Calibration Cotton Transactions, world.Time

56Based on so-call ’reference methods’

Expected precision forinternational market

Confidence interval

international market

Confidence interval

IM (+/ ) 0 1 unitIM (+/-) 0.1 unitLength (+/-) 0.02 inch

(+/-) 0 51 mm(+/-) 0.51 mmLength uniformity (+/-) 1.5 %Strength (+/-) 1 5 cN/texStrength (+/-) 1.5 cN/texRd % (+/-) 1 %+b (+/-) 0 5+b (+/-) 0.5Trash (+/-) 0.1 %

57From Sasser, 1992.

Reference cotton use in the world: 1991

Who No HVI Consumption

HVICC Ratio ICCS Ratiokg kg/HVI kg kg/HVIkg kg/HVI kg kg/HVI

USDA 212 19214 91 3023 14.2USDA 212 19214 91 3023 14.2

USA except USDA 91 828 9 49 0.5

OutsideOutsideUSA 318 192 0.6 1.8 0.004

58Total 621

Reference cotton use in the world: 1994

Who No HVI Consumption

HVICC Ratio ICCS Ratiokg kg/HVI kg kg/HVIkg kg/HVI kg kg/HVI

USDA x 14145 ? 6803 ?USDA x 14145 ? 6803 ?-21% +125%

USA except USDA x 766 ? 127 ?

- 7% +159%OutsideOutsideUSA x 245 ? 42 ?

+27% +2200%

59Total 883

+42%

Existing reference cottons after 1998

ICCS ICCS Mik l HVICCICCS ICCS Mike only HVICC

* Stelometer HVI HVI Stelometer HVI HVI

* Carded cotton Raw cotton Raw cotton

* 3 types 6 types 2* 2 types

* Measurement ofT1 Mike Length (UHM)T1 Mike Length (UHM)E1 UI%

(1 type with SL%) Strength

60

( yp ) g

ICCS Mike only standards

6 - International normalisationof the measurements

Length of ICCS standards

6 - International normalisationof the measurements

4 65.2

5.6

5 35 0

6.0

7.0Mike Length of ICCS standards

1.251.35 1.40

1.40

1.60Inches

2.8

3.74.2

4.6

3.43.7

4.44.8

5.3

3.0

4.0

5.0

0.700.80

1.00 1.05 1.10 1.10 1.10

0.90 0.90 0.881.00 1.00

1.151.25 1.20

0.80

1.00

1.20

2.5

Gm Cm Dm Bm Im AmCotton types

1.0

2.00.60 0.60

K F H G B A I C D ECotton types

0.40

0.60

yp

Strength Histogram2356 Cottons from different origins

yp

Upper Half Mean Length Histogram2356 Cottons from different origins

35Percentage %

30

40Percentage %

20

25

30

35g

0

10

20

0

5

10

15

61

15 19 23 27 31 35 39 43Strength in g/tex

0

St Maxi HVICC/St Mini HVICC Tested cottons

20 25 30 35 40Upper Half Mean Length in mm

0

Length Maxi HVICC/Length Mini HVICC Tested cottons

Existing reference cottons after 1998

62

Existing reference cottons after 1998

63

HVI modules calibration : IM

5 5 Calibration =

5

5.5s

Calibration change slopeand offset

4

4.5

d va

lues

Theo.

and offsetbetween observed vs

3.5

4

bser

ved Theo.

Obs.observed vs theorical values

3

Ob

2.52.5 3 3.5 4 4.5 5 5.5

64Theorical values

About reference values establishement

Question : is there any drift in the establishment of Calibration Cotton reference data ?

• A set of calibration cotton = at least 2 cottons • These can also be analyzed as samplesCalibration Samples Issue/DateSet 1 Set 1, 2, 3, … 1Set 2 Set 1 2 3 2Set 2 Set 1, 2, 3, … 2Set 3 Set 1, 2, 3, … 3

Comparison between results => drift ?65

p

Preliminary experiment

112• Illustrer dérive110

112 ICCSHVICC(1)

Slope 0.48 cN/tex / year

• et modifier diapo précédente

106

108 HVICC(2)

104

106

100

102 Slope 0.68 cN/tex / year

98

100Slope 0.11 cN/tex / year

661981 1983 1985 1987 1989 1991 1993 1995 1997

Drift and other troubles

Observed Drift

Consumption in 1991

• Observed Drift + Delay to access to recent generations of reference cottons+ Delay to access to recent generations of reference cottons

80

100cottons

=> Differential in reading levels cottons

=> Differential in reading levels => Lower accuracy in the yarn quality prediction

40

60kg

900

Breaking force (cN)RS 20 tex r = 0,96OE 20 tex r = 0,96RS 27 t 0 97

from fiber quality measurement

0

20Relations between yarn

500

700

RS 27 tex r = 0,97OE 27 tex r = 0,98RS 37 tex r = 0,97OE 37 tex r = 0,98=> Use / consume reference materials !!!!HVICC ICCS

USDA USA (not USDA) Other

versus fiber quality 300

500

6720 25 30 35 40 45 50

HVI strength (cN/tex)

100

Economical incidence of quality on fiber exchange priceon fiber exchange price

1 9 9 31 9 9 3

68

Evolution of premium/discounts for HVI strength over 5 years ( P SASSER EFS 1995)strength over 5 years ( P. SASSER EFS 1995)

400

300

400Data collected during M. Sasser’s presentation

200

b 1991

0

100

cent

s/lb 1992

1993

-100

019 23 24 26 30U

S 19941995

-200

69-300

Plan of presentation

• Introduction• Different ways of fibers characterization• A point about the standardization processA point about the standardization process• How does work an HVI• An example of relation between fiber and

yarn qualityyarn quality• Conclusions

70

Hardware design

FixedLight sensor Fixedclamp(front)

Mobileclamp

Light sensor Calibrated with

C b + fib

( ) clamp (back) ‘reference’

massesComb + fibers

Force sensor

Light emission

71Step motor

TenacityMaterialMaterial

Force sensorsensor

Opticalpsensor

72

TenacityMaterialMaterial

Forcesensorsensor

Tractionjaws

73

Fibrogram curve

Light sensor,measure of variation

% of fibers

Fibrogrammeasure of variation Fibrogram

Quantity of fibersQuantity of fibers for tensile test

Displacement

Light

sp ace e t

Displacement

74

gemission

p

Fiber length

Fibrogram curve

100 % of fibers

Fibrogram80

100 % of fibersne60

ping

zon 1/8° inch

40

Force

Cla

m

20

jaws0

Fiber length

75

Force / elongation curve

16000

12000

14000 Peak ForceModule

10000

12000

(cN

)

Strength (cN/tex) = Force x kStrength = Tenacity (cN/tex)6000

8000

Forc

e Strength (cN/tex) Force x k Estimated mass

Strength Tenacity (cN/tex) = Constraint= Force/Broken surface

2000

4000

= f (quantity of fibers, IM)= Force/Broken surface

+/-= Force/fineness0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

76Displacement (Step)Elongation

Fibrogram curve after a break

100 % of fibers

80

60

ne

40

mpi

ng z

on

20

Cla

m

jaws

0Fiber length

77

Fibrograms

100

80

100Fibrogram after breakFibrogram before break

60

fiber

s

40% f

0

20

00 10 20 30 40 50 60

Length78

Length

Position of the break

79a b<a

Rheology

Constraint

Elasticityof

reorganization

Elasticity

Slig

Slippage

DeformationPlasticity

80

Tenacity or strength

Results and conclusions

HVI Single fibers

FF FS S

F

81Tenacity F / S should be constant

Optical sensor

Light sensor Transmission

Diffraction- inside- outsideScatteringScattering- inside- outside

Light emission

outside

Absorption

82

g t e ss o

Original drawing : Gourlot 12/97

Possible effects of fiber properties(example on strength)(example on strength)

• 1-Sensor linearityLight sensor • 2-Shape factor

– micronaire– scouring / swelling

• 3-Maturity and fineness

Light emission

3 Maturity and fineness distributions

• 4-Colorg

Attention: the mass of b k fib i i d

4 Color• 5-Length distribution• 6-Ambiant conditionsbroken fibers is estimated

from this signal for the calculation of strength

• 6-Ambiant conditions

83

calculation of strength

Ambiant conditions

Should be at any time:Should be at any time:• 21 °C +/- 1 °C

65 % R l ti H idit (RH%) / 2 %• 65 % Relative Humidity (RH%) +/- 2 %

84

Ambiant conditions

Material and method

Hypothesis : ambiant conditions should be t bl d th t t d fib

BrushOptical sensor

stable around the tested fibers• Use of temperature and relative humidity

Sensor

probes• Use of HVI or RSTComb

Ejection

FibrosamplerAir ejection OFF

ON

85

Ambiant conditions

Results and conclusions : air succion OFF

14

m osampler

h or cal s

ensor

b osampler

10

12 ExternalBuilt-in

0

5

Room

Fibros

Brush

Senso

rOptic

aCom

bFibro

s

6

8

Tem

p (°

C)

-10

-5

0

%)

4

6

Diff

T

-20

-15D

iff H

R (%

0

2

m r h r r b r-30

-25

ExternalBuilt-in

86-2Roo

m

Fibrosam

plerBru

shSen

sor

Optical

sensor

Comb

Fibrosam

pler -35

Ambiant conditions

Results and conclusions : air succion ON

14

E t l osampler

h or cal s

ensor

b osampler

tion

10

12

ExternalBuilt-in

0

5

Fibros

Brush

Senso

rOptic

aCom

b

Fibros

Ejectio

6

8

Tem

p (°

C)

-10

-5

0

%)

4

6

Diff

T

-20

-15D

iff H

R (%

0

2

ler sh or or mb ler on-30

-25

ExternalBuilt-in

87

-2

Fibrosam

plerBru

shSen

sor

Optical

sensor

Comb

Fibrosam

pler

Ejectio

n-35

1920

Teneur en humidité (%)Moisture content (% w/w)

161718

GraineSource: USDA Seeds

131415

Coton-graine

More than 1 cN/tex

Seed-cotton

101112 More than 1 cN/tex

difference !(Sasser 1990)

789

Fibre

(Sasser 1990)

Fibres

456 Fibres

0123

880 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Humidité relative de l'air (%)

0

Relative humidity in the air (%)

Strength stability : HVICC bale 27985Strength stability : HVICC bale 27985Measuring unit covered vs uncovered

Motion Control 3500

24

25cN/tex

Motion Control 3500

22

23

24

Accepted range after calibration

21

22

0 30 60 90 120 150 180 210 24019

20

0 30 60 90 120 150 180 210 240Time (mn)

(Covered) (Uncovered)

89

Strength stability : HVICC bale 28484Strength stability : HVICC bale 28484Measuring unit covered vs uncovered

Motion Control 3500

33

34cN/tex Motion Control 3500

32

33Accepted range after calibration

30

31

0 30 60 90 120 150 180 210 24029

30

0 30 60 90 120 150 180 210 240Time (mn)

(Covered) (Uncovered)

90

Other possible bias in HVI measurement

Mass of this deposit = 0.0175 g91

Sources of variability in the results

VarietyG i diti

Plant to plantPi ki t h i

Seed cotton preparationGi i t h i (R/S)Growing conditions

(fertilizer, insects)Picking technique

Farm sizeGinning technique (R/S)

Lint cleaning

PrecisionAccuracy

R t bilit

RH conditionsNumber of samples / bale

RepeatabilityReproducibility

92

RH conditions,HVI calibration

Nb tests / sample

Number of samples / baleNumber of bales / lotMethod of sampling

Confidence Intervals (research samples in specific sampling conditions)specific sampling conditions)

2.5Units

2.0

2.5

UHMLUI

Upland Saw ginned

1.5

0StrengthUHMLUI

gsamples

Barbadense

1.0

UIStrength

Barbadense cottons

0.5

0.0

930 10 20 30 40 50

Nb measures / sample

Plan of presentation

• Introduction• Different ways of fibers characterization• A point about the standardization processA point about the standardization process• How does work an HVI• An example of relation between fiber and

yarn qualityyarn quality• Conclusions

94

Relations between yarnversus fiber qualityversus fiber quality

Open EndCard

D i fRing spinning

Drawing frame

95

Relations between yarn versus fiber qualityy q y

Coton A Coton BML ( ) 22 6 24 2ML (mm)UHML (mm)

22.628.4

24.228.9

UI (%)Strength (cN/tex)

79.625

83.730.3

Elong (%)IM

5.02.9

5.73.8

MRPM (%)

0.6758.5

0.9079.6

H (mtex)HS (mtex)

143214

155173

96Rd (%)+b

69.711.9

72.811.3

Relations between yarn versus fiber qualityy q y

CRL yarn tenacity tests

600Breaking force cN

Coton A RS

400

500 Coton A RSCoton A OE

Breaking force = 14.45 x Tex - 79.07

200

300

0

100 Breaking force = 11.38 x Tex - 62.20

0 5 10 15 20 25 30 35 40

0

-100

97Tex

Relations between yarn versus fiber qualityy q y

CRL yarn tenacity tests

700800

Breaking force cN

Coton B RS

500600 Coton B OE

Breaking force = 17,27 x Tex - 39,14

200300400

0100200

Breaking force = 14,75 x Tex - 78.92

0 5 10 15 20 25 30 35 40

0-100

98Tex

Relations between yarn versus fiber qualityy q y

CRL yarn tenacity tests (RS)

700800

Breaking force cN

Coton A

500600700

Coton B

300400 Breaking force = 17,27 x Tex - 39,14

100200

Breaking force = 14,45 x Tex - 79,07

0 5 10 15 20 25 30 35 40

0-100

99

0 5 10 15 20 25 30 35 40

Tex

Relations between yarn versus fiber qualityy q y

Eveness tester UT3 : thick places (RS)

1800

thick places 1000 m

1400

1800

1000Coton A

600

C t B

18 20 22 24 26 28 30 32 34 36 38 40200

Coton B

100Tex

Relations between yarn versus fiber qualityy q y

Eveness tester UT3 : thin places (RS)

1200Thin places 1000 m

800

1000

600

800

Coton A

200

400

C t B

18 20 22 24 26 28 30 32 34 36 38 400

200 Coton B

101

18 20 22 24 26 28 30 32 34 36 38 40

Tex

Relations between yarn versus fiber qualityy q y

Eveness tester UT3 : neps places (RS)

1300Neps 1000 m

900

1100Coton B

700

900

300

500

Coton A

18 20 22 24 26 28 30 32 34 36 38 40100

300

102

18 20 22 24 26 28 30 32 34 36 38 40

Tex

Relations between yarn versus fiber qualityy q y

Eveness tester UT3 : hairiness (RS)

7 5

8Hairiness H

6 5

7

7.5 Coton A

5 5

6

6.5

C t B

4 5

5

5.5 Coton B

18 20 22 24 26 28 30 32 34 36 38 404

4.5

103

18 20 22 24 26 28 30 32 34 36 38 40

Tex

Relations between yarn versus fiber qualityy q y

Eveness tester UT3 : CV% (RS) 26

CV %

22

24

C t A20

Coton A

16

18

Coton B

18 20 22 24 26 28 30 32 34 36 38 4014

Coton B

104

18 20 22 24 26 28 30 32 34 36 38 40

Tex

Relations between yarnversus fiber qualityversus fiber quality

Breaking force (cN)

900

g ( )RS 20 tex r = 0,96OE 20 tex r = 0,96RS 27 t 0 97

700

RS 27 tex r = 0,97OE 27 tex r = 0,98RS 37 tex r = 0,97

500

S 3 te 0,9OE 37 tex r = 0,98

300

20 25 30 35 40 45 50100

105

20 25 30 35 40 45 50

HVI strength (cN/tex)

Effect of fibre parameters on yarn resistanceresistance

• 191 cottons from various origins• Fibre analysis + spnning RS 20tex

T Fil 0 44 T HVI 0 0016 H 2 58 MR 0 33 UI 27 03Ten Fil = 0.44 TenHVI - 0.0016 H + 2.58 MR + 0.33 UI - 27.03R² = 0.76 ***

106

Fibre strength and UI vs yarn strenght RS 20 texstrenght RS 20 tex

UI%

1819

UI%

16178

Yarn80

1415

Yarn strength (cN/tex)

1213

1124 26 28 30 32 34

107HVI strength (g/tex, HVICC)

Fibre strength and UI vs yarn strenght RS 20 texstrenght RS 20 tex

UI%

1819 86

84

UI%

16178

Yarn

8280

1415

Yarn strength (cN/tex)

1213

1124 26 28 30 32 34

108HVI strength (g/tex, HVICC)

Fibre strength and MRvs yarn strenght RS 20 texvs yarn strenght RS 20 tex

MR

1819

MR

16178

Yarn0.70

1415

Yarn strength (cN/tex)

1213

1124 26 28 30 32 34

109HVI strength (g/tex, HVICC)

Fibre strength and MRvs yarn strenght RS 20 texvs yarn strenght RS 20 tex

MR

1819 0.97

0.90

MR

16178

Yarn

0.800.70

1415

Yarn strength (cN/tex)

1213

1124 26 28 30 32 34

110HVI strength (g/tex, HVICC)

Fibre strength and Hvs yarn strenght RS 20 texvs yarn strenght RS 20 tex

H

1819 130

H

16178

Yarn

1415

Yarn strength (cN/tex)

1213

1124 26 28 30 32 34

111HVI strength (g/tex, HVICC)

Fibre strength and Hvs yarn strenght RS 20 texvs yarn strenght RS 20 tex

H

1819

170130

H

16178

Yarn

170210

1415

Yarn strength (cN/tex)

1213

1124 26 28 30 32 34

112HVI strength (g/tex, HVICC)

Fibres characteristics vs yarn strenght RS 20 texvs yarn strenght RS 20 tex

19 UI%Yarn strength (cN/tex)

18

19 86

8284

U %

16

178280

14

15 MR H

13

14 0.97

0.800.90 170

130

210

11

12

4 6 9 1 4 4 7 9 2 4 5 7 0 2 5

0.800.70

210

113

24 26 29 31 34 24 27 29 32 34 25 27 30 32 35

HVI strength (g/tex, HVICC)

Fibres characteristics vs yarn eveness RS 20 texvs yarn eveness RS 20 tex

• 30 cottons• Fibres characterization• Spinning OE 20, 27 and 37 tex p g ,• Spinning RS 20, 27 and 37 tex

114

Correlations coefficients between fibres characteristics and OE yarn evenesscharacteristics and OE yarn eveness

ML UHML UI ST EL Thin pl. (FIN) 20 tex -0.55 -0.58 -0.33 -0.62 -0.43 Thick pl. (GRO) ‘’ -0.34 -0.37 -0.12 -0.34 -0.20 Neps (NEP) ‘’ -0.25 -0.28 -0.10 -0.26 -0.22Neps (NEP) 0.25 0.28 0.10 0.26 0.22CV evenness (CVR) ‘’ -0.62 -0.63 -0.48 -0.60 -0.49 Hairiness (PIL) ‘’ -0.63 -0.61 -0.60 -0.55 -0.59 FIN 27 tex 0 54 0 57 0 33 0 52 0 41FIN 27 tex -0.54 -0.57 -0.33 -0.52 -0.41GRO ‘’ -0.32 -0.35 -0.12 -0.29 -0.25 NEP ‘’ -0.29 -0.32 -0.10 -0.28 -0.27 CVR ‘’ -0.39 -0.40 -0.27 -0.27 -0.34PIL ‘’ -0.57 -0.56 -0.52 -0.52 -0.41 FIN 37 tex -0.43 -0.44 -0.32 -0.34 -0.30GRO ‘’ -0.39 -0.41 -0.23 -0.28 -0.34 NEP ‘’ -0.25 -0.29 -0.03 -0.21 -0.17 CVR ‘’ -0.29 -0.28 -0.29 -0.21 -0.26

115

CVR 0.29 0.28 0.29 0.21 0.26PIL ‘’ -0.65 -0.64 -0.59 -0.49 -0.62

Correlations coefficients between fibres characteristics and RS yarn evenesscharacteristics and RS yarn eveness

ML UHML UI ST EL Thin pl. (FIN) 20 tex -0.75 -0.70 -0.86 -0.68 -0.71Thick pl. (GRO) ‘’ -0.85 -0.81 -0.87 -0.78 -0.81 Neps (NEP) ‘’ -0.60 -0.61 -0.42 -0.51 -0.60p ( )CV evenness (CVR) ‘’ -0.89 -0.86 -0.89 -0.82 -0.83 Hairiness (PIL) ‘’ -0.72 -0.66 -0.86 -0.64 -0.73 FIN 27 tex 0 71 0 66 0 85 0 64 0 67FIN 27 tex -0.71 -0.66 -0.85 -0.64 -0.67GRO ‘’ -0.82 -0.80 -0.79 -0.75 -0.79 NEP ‘’ -0.49 -0.53 -0.24 -0.41 -0.48 CVR ‘’ 0 90 0 87 0 90 0 84 0 85CVR ‘’ -0.90 -0.87 -0.90 -0.84 -0.85PIL ‘’ -0.68 -0.62 -0.84 -0.64 -0.72 FIN 37 tex -0.66 -0.60 -0.82 -0.58 -0.60GRO ‘’ -0.81 -0.79 -0.74 -0.73 -0.75 NEP ‘’ -0.47 -0.51 -0.20 -0.40 -0.43 CVR ‘’ -0 90 -0 86 -0 90 -0 83 -0 84

116

CVR -0.90 -0.86 -0.90 -0.83 -0.84PIL ‘’ -0.71 -0.66 -0.86 -0.64 -0.75

Plan of presentation

• Introduction• Different ways of fibers characterization• A point about the standardization processA point about the standardization process• How does work an HVI• An example of relation between fiber and

yarn qualityyarn quality• Conclusions

117

Conclusion

HVI cotton fiber measurements may be used to :

• Commercialy characterize cotton fibers properties

y

Commercialy characterize cotton fibers properties

– standardization ongoing for all measured parameters

– future evolutions to integrate new properties characterization

that may induce new rules in the trade– that may induce new rules in the trade

118

Conclusion

HVI cotton fiber measurements may be used to :

• Arrange laydowns to stabilize or control :

y

g y

– mean valuesmean values

– variability around those mean values according to production means (from field to ginning mill), sampling procedures (from ginning to spinning mills) …

119

Conclusion

HVI cotton fiber measurements may be used to :

• Predict the fiber behavior in the processing steps both

y

p g pin terms of :

– quality

productivity– productivity

120

Conclusion

HVI cotton fiber measurements may be used to :

• Control,

y

,

• Check,Check,

• And set spinning machineriesAnd set spinning machineries

to get the highest yarn quality as demanded by theto get the highest yarn quality as demanded by the market

121

Conclusion

HVI cotton fiber measurements may be used to :

• Breed new varieties depending on the improvements

y

p g pmade in the transformation stages.

depending on commercialy recognised characterizationcharacterization

122

What Cirad does and recommends

1) A t lib ti t i di l l1) Apparatus calibration to insure a proper reading level.

2) Check and set-up of procedures to warrant proper precision and accuracy levels.

3) Check of the results through a participation to3) Check of the results through a participation to periodical international round tests.

4) Check the precision in classing routine.

TO GETTO GET

– Homogeneous results on the cotton market

123– Limited number of claims.

Centrede coopérationinternationaleen recherche Thank youagronomiquepour ledéveloppement

y

for your attention