LAB 5: S-parameter Simulation, Matching and Optimizationrmh072000/Site/Software_and... · LAB 5:...

Post on 01-Feb-2018

235 views 3 download

Transcript of LAB 5: S-parameter Simulation, Matching and Optimizationrmh072000/Site/Software_and... · LAB 5:...

ADS Fundamentals - 2009

LAB 5: S-parameter Simulation, Matching and Optimization

Overview‐Thisexercisecontinuestheamp_1900design.Itteacheshowtosetup,run,optimizeandplottheresultsofvariousS‐parametersimulations.Also,theoptimizerisusedtocreatetheimpedancematchingnetworks.

OBJECTIVES • Measuregainandimpedance.

• Setupandusesweepplans,parametersweeps,andequationbasedimpedance.

• Calculatevaluesforamatchingnetwork.

• Designamatchingnetwork.

• Useoptimizationtomeetdesigngoals.

• UseNoiseandGaincircles.

• WriteafilewiththeDataFileTool.

©CopyrightAgilentTechnologies2009

Lab 5: S-parameter Simulations and Optimization

5‐2©CopyrightAgilentTechnologies2009

Table of Contents

1. Set up the simulation and circuit with ideal components......................................3

2. Simulate and plot data with marker readout modifications...................................4

3. Write an equation to vary the Term port impedance. ...........................................4

4. Calculate L and C values in the data display. ......................................................5

5. Replace L and C with calculated values and simulate. ........................................6

6. Use the Smith Chart utility to build a simple matching network. ..........................7

7. Add output matching components......................................................................11

8. Set up an Optimization controller and Goals......................................................12

9. Enable the components to be optimized. ...........................................................14

10. Plot the results. ...............................................................................................16

11. Update optimized values and disable the opt function....................................17

12. Simulate the final matched circuit. ..................................................................18

13. Stability equations with gain and noise circles................................................19

14. OPTIONAL – Read and Write S-parameter Data with an S2P file .................21

15. OPTIONAL – YIELD analysis .........................................................................23

Lab 5: S-parameter Simulations and Optimization

5‐3©CopyrightAgilentTechnologies2009

PROCEDURE

1. Setupthesimulationandcircuitwithidealcomponents.

a. Savethelastschematic(ac_sim)designas:s_params.

b. Modifythedesigntomatchtheschematicshownhere:

• DeletetheACsourceandcontroller.Alsodeletethemeasurementequations,parameterssweep,andanyunwantedvariables,etc.

• Insertterminations(Term)fromtheS‐parameterpalette.

• FromtheLumpedComponentspalette,inserttwoidealinductors:DC_FeedtokeeptheRFoutoftheDCpath

• InserttwoidealDCblockcapacitors.

• DeletethenodenamesbyclicktheNameiconand,leavingitblank,clickingonthenodenames(VinandVout).ForS‐parametersimulation,theportterminations(num1andnum2)providenodes.

c. InsertanS­Parametersimulationcontrollerandset:Start=100MHz,Stop=4GHz,andStep=100MHz.

d. Savethedesign.

Lab 5: S-parameter Simulations and Optimization

5‐4©CopyrightAgilentTechnologies2009

2. Simulateandplotdatawithmarkerreadoutmodifications.

a. Besurethenameofthedatasetis:s_paramsandthensimulate.

b. Whenthesimulationisfinished,insertarectangularplotofS21(dB).Insertamarkeron1900MHzandverifythatthegainisabout20dB.

c. InsertaSmithchartofS11andplaceamarkeron1900MHz.Tomovethemarker,selectthereadoutandusethearrowkeys.

d. Editthemarkerreadout(doubleclick).GotothetheFormattabandchangeZoto50asshown.ClickClickOKandthemarkerwillnowreadthevalueinvalueinohms,referencedto50ohms.

3. WriteanequationtovarytheTermportimpedance.

a. Inschematic,writeanequationforport2TermZtobe35ohmsabove400MHz:Z=iffreq<400MHzthen50else35endif.

b. SimulateandtheninsertalistofPortZ(2).VerifythatZis35Ohmsabove400MHz.

c. Resetthevalueofport2Termto50ohms:Z=50Ohm.

Typedirectlyon‐screen.

Lab 5: S-parameter Simulations and Optimization

5‐5©CopyrightAgilentTechnologies2009

4. CalculateLandCvaluesinthedatadisplay.

Thetransmissionandreflectioncharacteristicsofthebiasedcircuitshowabout20dBofgainbutwithamismatchto50ohmsattheinput.Also,theDCfeedsandblocksareidealandneedtobereplacedwithrealvalues.

a. Indatadisplay,writeanequation,XC,forthecapacitivereactanceof10pFat1900MHz.ThenlistequationXCasshownhere.Ifdesired,titlethelistusingPlotOptions.Withthislowreactance,10pFwillbetheblockingcapacitorvalues.

b. ChangethevalueofthecapacitorintheequationandverifythatXCisautomaticallyupdatedinthelist.

c. Createatableforarangeofinductorvaluesandreactances.L_valisarangeofsweptvaluesfrom1nanoto200nanoin10nanosteps.InADS,thesyntaxoftwocolonsisawildcard(allvalues)andcanalsobeusedtoindicatearangeasshownhere.Thesquarebracketsareusedtogeneratethesweep.Afterwritingtheequationsandlistingthemasshownhere,scrollthroughthelist.Astheinductorvalueincreases,thereactanceat1.9GHzincreases.Therefore,avalueof120nHshouldbeenoughfortheDCfeed(RFchoke).

NOTEonequationsandtables­Youcancopytheequationsandtables(CtrlC/CtrlV)tootherdatadisplays.OrusethecommandFile>SaveAsTemplatetosavethedatadisplayasatemplatethatcanbeinsertedinotherprojects.

d. Savethecurrentdatadisplayandtheschematic.

NOTE:TheXLequationwillbered(invalid)untilL_valiswritten.

Lab 5: S-parameter Simulations and Optimization

5‐6©CopyrightAgilentTechnologies2009

5. ReplaceLandCwithcalculatedvaluesandsimulate.

a. Savetheschematicwithanewname:s_match.

b. Changethecomponentname(DC_Block)ofbothblockingcapacitorstoCandtheywillautomaticallybecomelumpedcapacitorsasshownhere.AssignthevalueforeachC=10pF.

c. Changetheidealinductors(DC_Feed)inthesamemannerandsetL=120nHforeach.AccordingtotheXLandL_valtable,thereactanceat1900MHzisabout1.5K,whichisreasonableatthispointinthedesign.

d. Theschematicshouldnowlookliketheoneshownhere.CheckyourvaluesandthenSimulate.

Highlightthecomponentname,typeinC,andpressEnter:DC_BlockwillbecomeC.Thenchangeto10pF.

Lab 5: S-parameter Simulations and Optimization

5‐7©CopyrightAgilentTechnologies2009

e. Inthedatadisplay,plotthetransmission(S12andS21)andreflection(S11andS22)datawithmarkersasshownhere.Noticethegainstaysrelativelyflat,theleakageisreasonable,buttheimpedanceisnotnear50ohms.Thenextstepistocreateaninputmatchingnetwork.

6. UsetheSmithChartutilitytobuildasimplematchingnetwork.

a. Inthecurrentschematic,clickonthecommands:Tools>SmithChart(thisisthesameasDesignGuide>FilterandthenselectingtheSmithChartControlwindow).

b. ClickthePaletteiconshownhere‐thisaddstheSmithChartpalettewiththeSmithCharticontoyourschematic.

Smith Chart Control Window

Lab 5: S-parameter Simulations and Optimization

5‐8©CopyrightAgilentTechnologies2009

TypeintheZvalue:554‐j*220here.

c. Intheschematic(s_match),inserttheSmithChartMatchingNetworkcomponent(alsoknownasaSmartSmartComponent)neartheinputoftheamplifier–no–noneedtoconnectit–butitisrequired.Also,clickOKclickOKwhenamessagedialogappears.

d. GobacktotheSmithChartcontrolwindowandtypeintheFreq(GHz)to1.9asshownhere.

e. InthelowerrightcorneroftheSmithChartChartutilitywindow,selecttheZLcomponentandtypeintheimpedanceimpedancelookingintotheamplifierfromfromthelastsimulation:554‐j*220asasshownhereandclickEnter.

f. NoticethattheloadsymbolontheSmithcharthasrelocatedasshownhere.Next,selecttheshuntcapacitorfromthepaletteandmovethecursorontheSmithchart:whenyougettothe50Ohmcircleofconstantresistance,clicktostop,asshownhere(itdoesnothavetobeexactforthisexercise).

Loadsymbolisat554‐j220.Sourcesymbolisat50+j0.

Shuntcapallowsyoutomovetothe50ohmcircle.

Lab 5: S-parameter Simulations and Optimization

5‐9©CopyrightAgilentTechnologies2009

g. Next,selecttheseriesinductorandmovethecursoralongthecircleuntilyoureachthecenteroftheSmithchartandthenclick.

Nowyouhavea50Ohmsmatchbetweentheloadandsource.

h. MovethecursorintothelowerrightcornerofthewindowandclickoneachofthecomponentsintheSchematicasshownhere.Youwillseethevaluesfortheinductorandcapacitor:approximatelyL=14nHandC=400fFor0.4pF.

i. Toclearlyseetheresponseofthisnetwork,changetheStopFreqto4GHz(4.0e9)andyouwillseethenull(S11)at1900MHz.Also,setTrace2toS21toseebothreflectionandtransmission.

j. TohavetheDesignGuidebuildthecircuit,clickthebuttonbuttononthebottomofthewindow:BuildADSCircuit.Circuit.ClickOKtoanymessagesthatappear.

SeriesLallowsyoutomovealongthe50ohmcircletothecenteroftheSmithChart.

Lab 5: S-parameter Simulations and Optimization

5‐10©CopyrightAgilentTechnologies2009

k. Ontheschematic,pushintotheSmithChartcomponentandyoushouldseethenetworksimilartotheoneasshownhere.YouvaluesmaybeslightlydifferentwhichisOK.Popoutwhenfinished.

Nowitistimetousethematchingnetworkwiththeamplifier.Youcouldusethecomponentbyconnectingittotheamplifierinput.However,becauseyouwillbeusingtheoptimizer,itisbettertohavetheL‐Ccomponentsontheschematic.

l. Eithercopy/pastetheL‐CandgroundcomponentsontotheamplifierorsimplyinsertanLandConyourschematic.ThensetthevaluestoL=14.3nHandC=0.4pF.Theamplifierinputshouldnowbeasshownhere.

m. DeletetheSmithChartcomponentfromtheschematicandclosetheSmithChartutilitywindow.

Lab 5: S-parameter Simulations and Optimization

5‐11©CopyrightAgilentTechnologies2009

n. Simulatewiththeinputnetwork.

o. Setthesimulationstepsizeto10MHz,andsimulate.

p. Whenthesimulationiscomplete,addS‐22totheSmithchart.PlaceamarkeronS‐22at1.9GHz.TheresultsshowS‐11isgoodbutS‐22isnotmatchedasshownhere.

7. Addoutputmatchingcomponents.

BecauseS‐22issimilartotheunmatchedimpedanceoftheinput,itisreasonabletoputasimilartopologyontheoutputandsimulatetheresponse.

a. SelecttheinputL‐Cnetworkandusethecopyicon(shownhere)tomakeacopytothecomponents.Thenplacethemneartheoutput,withagroundonthecapacitor.Deletethewiresandinsertthemasshownattheoutput.

b. Simulateandchecktheresponse.YourdatashouldbesimilartotheresultsshownherewhereS22isnowcloserto50ohms.However,S11hasshifted,asyoushouldexpect.SettheS‐22markerreadouttoZo=50.

c. Savethedesignbutdonotclosethewindow.

DoubleclicktoeditthemarkerreadoutandsetZo=50.

Lab 5: S-parameter Simulations and Optimization

5‐12©CopyrightAgilentTechnologies2009

8. SetupanOptimizationcontrollerandGoals.

a. Savethes_matchschematicdesignwithawithanewname:s_opt.

b. GototheOptim/Stat/Yield/DOEpalettepaletteandinsertanoptimizationcontrollerandonegoalasshownhere.here.

c. Editthegoalbydoubleclicking.Inthethedialogbox,typeinthefollowingfollowingsettingsandclickApplyafteraftereachoneandOKwhendone.

• Expr:dB(S(1,1))SimInstanceName:SP1.

• Max=­10(S11mustbeatleast–10dBtoachievethegoal)

• RangeVar=freqRangeMin=1850MHzRangeMax:1950MHz

Noteonquotationmarks‐Therangevaluesdonotneedquotesbecausetheyarevaluesandnotstrings(variables).

Noneedtotypequotationmarkswhenusingdialogbox.

Lab 5: S-parameter Simulations and Optimization

5‐13©CopyrightAgilentTechnologies2009

d. CopytheS11goal‐selectitandusethecopyicon.

e. Onscreen,changethegoalexpressionto“dB(S(2,2))”asshownhere.Now,youhavetwogoalsfortheinputandoutputmatch.

f. SetuptheOPTIMcontroller.Forthislabexercise,mostofthedefaultsettingscanremain,includingtheRandomtype.However,editthecontrollerandsettheMaxIter=125andsettheFinalAnalysis=“SP1”.Thesesettingsmeanthattheoptimizerwillrunforupto125iterationstoachievethegoals.TheNormalizegoalssettingmeansthatallgoalswillhaveequalweighting.Also,afinalanalysisisautomaticallyrunwiththelastvaluessothatyoucanplottheresultswithoutrunninganothersimulation.

NoteonOptimparametersettings–

NormalizeGoals=nomeansthatmultiplegoalsarenotequallyweighted.Toequallyweightallgoals,setthistoyes.Forthislabitisnotrequired.

SetBestValues=yesmeansthatthecomponentsonschematiccanbeupdatedwiththebestoptimizedvalues.TheSavesettingsallsavedatatothedataset.Insomecases,thiscanbealotofdataandusealotofmemory.Also,thedefaultistouseallgoalsandallenabledcomponents(nextsteps)ontheschematic.However,youcanedittheOPTIMcontrollerandselectwhichgoalsorvariablestouse.AllofthesettingsareexplainedintheHELP(manuals).

NOTE:The‘Save’parametersthataresetto‘no’meanthatthosevalueswillnotbewrittenintothedataset.

Lab 5: S-parameter Simulations and Optimization

5‐14©CopyrightAgilentTechnologies2009

9. Enablethecomponentstobeoptimized.

a. Inschematic,gotoOptions>Preferences>andselectthetabtabmarked:ComponentText/WireLabel.TurnontheFullFulldisplayforOptasshownhereandclickOK.Thiswillallowallowyoutoseetherangesettings.

b. Edit(doubleclick)theinductorL_match_in.Whenthedialogdialogappears,clicktheTune/Opt/Stat/DOESetupbutton.IntheOptimizationtab,settheinductortobeEnabledasshownandtypeinthecontinuousrangefrom1nHto40nHasshownhere.ClickOKandthecomponenttextwillshowtheoptfunctionandrange.

c. GoaheadandEnabletheotherthreematchingcomponentsasshown.Editeachoneusingthedialogboxoryoucantypedirectlyon‐screenusingtheoptfunctionandcurlybracesfortherange.Also,usetheF5keytomovecomponenttextasneeded:

Lab 5: S-parameter Simulations and Optimization

5‐15©CopyrightAgilentTechnologies2009

d. CheckthecircuitasshownhereandthenSimulateandwatchthestatuswindow.

e. Thestatuswindowreportsprogress.Ifthegoalsaremet,theEF(errorfunction)=0.AsuccessfuliterationoccursiftheEFmovesclosertozero.WithEF=0(orcloseinsomecases),thenextstepistoupdatecomponentvaluesandplottheresults.IfyourEFisnotzero,checktheschematicandtryitagain.

Lab 5: S-parameter Simulations and Optimization

5‐16©CopyrightAgilentTechnologies2009

NOTEonoptimizationEFthatdoesnotreachzero­Ifanoptimizationdoesnotmeetthegoal,youcanloosenthegoalsorDesiredError.Also,lookforcomponentsthatarebeingdriventotheendsoftheiroptrangeandwidenthem.Also,tryanotheroptimizationmethod,increasethenumberofiterations,ortryanothertopology.

10. Plottheresults.

a. Inthedatadisplay,insertarectangularplot.Then,asshownhere,addthecompleteSmatrixofthefinalanalysisindBtoseeallfourSparameters.Thiswayyoucanquicklyverifytheresults.Yourvaluesmaydifferslightlybutthegoalsfromtheoptimizationshouldbemet.

b. PlottheimpedanceS11andS22onaSmithchart.ChangethemarkerreadouttoZo=50.Asyouwillsee,theimpedanceisnotcloseenoughto50ohms,eventhoughthegoalsweremet.Therefore,somemodificationswillbemadeinthenextsteps.Butfirst,youwillupdatetheschematicwiththevaluesfromtheoptimization.

Lab 5: S-parameter Simulations and Optimization

5‐17©CopyrightAgilentTechnologies2009

11. Updateoptimizedvaluesanddisabletheoptfunction.

a. Clickthecommand:Simulate>UpdateUpdateOptimizationValues.Theenabledenabledcomponentsshouldnowhavethethefinal(best)valuesasthenominalvalues.values.Forexample,theinputinductormayinductormaylookliketheoneshownhere‐here‐yourvaluesmayvaryalittlebecauseofbecauseoftherandommodeandnoseeding.seeding.

b. Disableacomponent.Edit(doubleclick)L_match_ininductor.ThenclicktheTune/Opt/Stat/DOEbutton.SelectDisabledDisabledasshownhereandclickOK.NoticeNoticethatthecomponentfunctionchangeschangesfromopttonoopt.Thismeansthecomponentwillnotbeusedinanoptimization.Youcanalsodisableacomponentbyinsertingthecursoron‐screenandtypingnoinfrontoftheoptfunctiontomakeitnoopt–tryit.

c. Savethes_optschematic.Inthenextsetofsteps,youwillsetupafinalmatchedcircuit.

NOTEondeactivatingtheoptimizationcontroller‐Ifyouwanttosimulatewithoutrunninganoptimization,youmustdeactivatetheoptimizationcontroller.

Disabledoptfunction=noopt, or {-o} if the Options>Preferences (Display Format) is set to Short.

Lab 5: S-parameter Simulations and Optimization

5‐18©CopyrightAgilentTechnologies2009

12. Simulatethefinalmatchedcircuit.

a. Savethes_optschematicas:s_final.

b. Deactivate(usetheicon)theoptimizationcontrollerandgoals.

c. ModifythefourLandCmatchingcomponentvalues,addingresistancetotheinductorsasshownhere.Thiswillresultinagoodmatchandwillbeusedfortheremainderofthelabexercisessothatallstudentshavethesamecircuit.Goaheadandchangethevaluesbytypingdirectlyon‐screenasshownhere:

L_match_in=18.3nH&R=12Ohm L_match_out=27.1nH&R=6Ohm

C_match_in=0.35pF C_match_out=0.22pF

d. WiththenewfinalcomponentvaluesandSimulate.

e. Whenthedatadisplayopens,plottheentireSmatrixbyselectingSinthedataset.AlsoplottheS11andS22ontheSmithcharttoverifythematchiscloseto50ohmsat1900MHz.Withtheseresults,thenextstepswillbetosimulatestability,gainandnoisecircles.

f. Savethefinaldesignanddatadisplay.Closethedatadisplaybutkeeptheschematicwindowopened.

Improvedgainwithimprovedmatch.

Lab 5: S-parameter Simulations and Optimization

5‐19©CopyrightAgilentTechnologies2009

13. Stabilityequationswithgainandnoisecircles.

a. Savethes_finaldesignas:s_circles.

b. GototheS‐parametersimulationpaletteandinserttwostabilitymeasurementequationsMuandMuPrime(iconsshownhere).Thesecanbeusedwiththeirdefaultsettings..

c. Scrolldowninthepaletteandinserttwomeasurementequations:GaCircleandNsCircleasshown.Also,inserttheOptionscontrollerandsetTemp=16.85toavoidthewarningmessagefornoise.Tnomisthetemperatureatwhichadevicemodelisextractedanyshouldnotapplyhere.AllotherOptionsdefaultsettingsareOK.

d. ChangethedBgainintheGaCircleto30asshown.NosettingisrequiredfortheNsCircle–itwilluseNFmin(calculatedminimumnoisefigure)fromthesimulationdata.

Gain:30dB.

Lab 5: S-parameter Simulations and Optimization

5‐20©CopyrightAgilentTechnologies2009

e. Changethesimulationfrequency=1850MHzto1950MHzsothatfewerdatapoints(circles)willbecreated.Checktheschematic,besurethenoisecalculationisturnedONinthecontroller,andSimulate.

f. Whenthedatadisplayopens,plotthemeasurementequations:NsCircle1andGaCircle1onaSmithchartasshown.

g. Inarectangularplot,addMu1andMuPrime1asshown.

h. Also,insertalistofnf(2),NFmin,andSopt.

NOTEonresults‐OntheSmithchart,theareainsidetheGainCircleindicatestheloadimpedancethatwillresultin30dBofgain.TheNoiseCircleisdifferentbecauseitscenterindicatestheoptimumvalueofsourcereflectioncoefficientthatwillresultintheminimumnoisefigure(NFmin).WiththecenteroftheNoiseCircleiswithintheGainCircle,bothGainandNFmincanbeachieved.Thetwostabilitytraces,Mu(load)andMuPrime(source),aregreaterthanone.Thismeansthecircuitisstable(itwillnotoscillate)withinthe100MHzbandwidth.Finally,thelistedvalueofnf(2)isthenoisefigurewhenport2istheoutputport.ThisvaluewouldimproveifthesourcereflectioncoefficientwereequaltoSopt(optimumsourcematch).

Ifsourcereflectioncoefficientisequaltothecenterofthenoisecircle,yougetminimumnoisefigure.

Lab 5: S-parameter Simulations and Optimization

5‐21©CopyrightAgilentTechnologies2009

i. Saveandcloseallthedesignsanddatadisplaysintheproject.Atthispoint,theamplifierisreadytobetestedwiththenon‐linearsimulator,HarmonicBalance.However,beforedoingso,youwillreturntothesystemprojectinthenextlabandbuildthetwofiltersfortheRFsystem.

14. OPTIONAL­ReadandWriteS­parameterDatawithanS2Pfile

YoucanreadorwritedatainTouchstone,MDIF,orCitifileformats.ADScanconvertsupporteddataintotheADSdatasetformat.Typically,thesedatafilesareputintheprojectdirectorybuttheycanalsobesenttothedatadirectory.Youcancontrolwheretheyreside.

a. Openanewschematicandsaveitas:s2p_data.

b. ClickontheDataFileToolicon.

c. Whenthedialogboxopens,clicktheboxtoWritedatafilefromdataset,thenselecttheTouchstoneformat.Youaregoingtowrite(convert)yourexistingADSdataset(s_params)intoaTouchstonefile.Itwillrepresentmeasurementdatafromanetworkanalyzer.

d. IntheOutputFileNamefield,type:my_file.s2p.ThiswillbethenameofthetheTouchstoneformatfilethatwillbeconvertedfromADSdata.

e. SelecttheOutputDataFormatasMag/Angle.Mag/Angle.

f. IntheDatasetsfield,selectthedataset:s_params.Thiswasthedatasetfromthethesimulationusingtheidealcomponents.components.

g. ClickWritetoFile.ChecktheStatusWindow.Window.Ifsuccessful,youwillseeamessage.message.Thismeansmy_file.s2pisnowaaTouchstonefileinthedatadirectoryofthetheamp_1900project.Youcancheckthisifyouthisifyouwantandyoucanuseatexteditoreditor(ADSMainwindow:Tools>TextEditor)Editor)tolookatortomodifythefile.

Lab 5: S-parameter Simulations and Optimization

5‐22©CopyrightAgilentTechnologies2009

SimulationController:Frequencytab‐

h. ClosetheDataFiletoolwindow.

i. Intheemptyschematic,insertanS2PcomponentfromtheDataDataItemspalette.Youwillnoticethatthecomponentvariablevariable(File=)isnotyetassigned

j. Toassignthedata,edittheS2Pcomponentandanotherdialogdialogboxwillappear.Next,browseforthefilename.WhentheWhenthenextdialogappears,selectmy_file.s2pandclickthetheOpenbuttonandthefilenamewillbeassigned(shownhere).

(shownhere).

k. Intheschematic,insertanS_Paramstemplate(Insert>Template)andwiretheS2PcomponenttotheTermswithgroundsasshownhere.

l. FromtheSimulation‐S_Parampalette,insertaSweepPlanandsetittoStart=100MHz,Stop=3GHzandStep=100MHzasshown.SweepplansarenormallyusedforfrequencysweepswithinsweepsbutyoucanuseitheretoseehowitreplacestheFrequencysettingsintheS‐parametersimulationcontroller.

m. TousetheSweepPlan,editthesimulationcontroller.IntheFrequencytab,selecttheSwpPlan1asshownhere.GototheDisplaytab,tab,selectSweepPlanandremovethestart,stopandstopandstepasshownhere.

Lab 5: S-parameter Simulations and Optimization

5‐23©CopyrightAgilentTechnologies2009

n. SimulateandtheresultswillautomaticallyappearintheDataDisplaywindowbecausethetemplatehasaDDSdisplaytemplatealso.

o. ZoominontheS21measurementandaddtheS21simulationdatafromyouroriginals_paramsdatasettoverifythattheTouchstonefilecorrectlyrepresentedthedata.Asyouwillsee,thetwotracesareidenticalexceptthattheS2Psimulationonlygoesto3GHz.Here,thetracethicknessandtypeshavebeenadjusted(usingTraceOptions)toshowbothtracesmoreclearly.Markershavealsobeenadded.

15. OPTIONAL–YIELDanalysis

Refertothetheoryslidesandruntheyieldanalysisexamplewithadifferentyieldspec(15dBforexample)usingadifferentfrequencyrange.Examinetheresultsinthedatadisplay.

Lab 5: S-parameter Simulations and Optimization

5‐24©CopyrightAgilentTechnologies2009

EXTRA EXERCISES:

1. Z_PORTS‐Inaseparateschematic,setupanSparametersimulationofimpedancethatisdescribedbyanequationasshownhere.Plottheresponseandtryadjustingthevalues.

2. SetupthesimulationusingasweepwithinasweepusingtwoormoreSweepPlans.

3. Gobacktotheoptionalexerciseandusethetexteditortoeditthes2pfile,changesomevalues,andsimulatetoverifythatyoucandothis.