Ken Lite and Josh Hackett: OWRD Marshall Gannett: USGS · Ken Lite and Josh Hackett: OWRD Marshall...

Post on 22-Jun-2018

216 views 0 download

Transcript of Ken Lite and Josh Hackett: OWRD Marshall Gannett: USGS · Ken Lite and Josh Hackett: OWRD Marshall...

Groundwater in the Whychus Subbasin Ken Lite and Josh Hackett: OWRD

Marshall Gannett: USGS

Upper Deschutes Basin Groundwater Flow System

Whychus Subbasin

170 Groundwater Points of Appropriations (Wells with Water Rights)

96 Cubic Feet Per Second (CFS): Face Value Rate

90

100

110

. . . . . . 120

130

140

150

. . ............................... r ................................. r ................................ l ............. oesc 3016 w ater Level - oeptll

·······························r·································r······················ oesc 2929 w ater Level - oepth

i T I , f 1 r 1 1 T

160 0 0 0 0 0 0 0 (0 1"'-- CD G) 0 '" C'J G) G) G) G) 0 0 0

'" '" '" '" C'J C'J C'J -- -- -- -- -- -- --'" '" '" '" '" '" '" -- -- -- -- -- -- --'" '" '" '" '" '" '"

Time Series of Groundwater Levels in the Sisters Area

Wat

er

Leve

l (fe

et b

elo

w la

nd

su

rfac

e)

Springs on McKinney Butte

Anderson

Springs

Camp Polk Springhouse

Chester

Springs

Frank

Springs

Thermal Contribution to Whychus Creek

2

4

6

8

10

12

14

16

18

20

22

08/30/07 09/04/07 09/09/07 09/14/07 09/19/07 09/24/07 09/29/07 10/04/07 10/09/07 10/14/07

Tem

per

atu

re (

oC

)

Whychus Creek above Chester Springs

Whychus Creek below Frank Springs

Frank Springs

Chester Springs

Stable Isotopes

-16.0

-15.0

-14.0

-13.0

-12.0

-11.0

-10.0

500 1000 1500 2000 2500

Spring Elevation (m)

δ1

8O

(‰

)

Frank Springs

Chester Springs

Camp Polk Springhouse

Anderson Springs

Paulina Spring

Alder Springs

Metolius Spring

Lower Opal Springs (Caldwell, 1998)

δ18

O = -0.0018(elevation in m) - 10.9

spring

elevation

inferred recharge elevation

After James (1999)

Temperature

After Manga and Kirchner (2004)

0

2

4

6

8

10

12

500 1000 1500 2000 2500 3000

Recharge Elevation (m)

Sp

rin

g T

emp

era

ture

(°C

)

Paulina Spring

Camp Polk

Springhouse

Anderson Springs Frank Spring

Metolius Spring

Alder Springs

Lower Opal

Springs

geo

therm

al w

arm

ing

ΔT

Chester Spring

Camp Polk McKinney Butte

Springs Springs

MAJOR IONS Anthropogenic

influence No contamination

STABLE

ISOTOPES

Low recharge

elevations

High recharge

elevations

TEMPERATURE No geothermal

warming

Geothermal

warming

GROUNDWATER

SCALE Local

Intermediate or

regional

Source of Springs Summary

Improving Groundwater Modeling Capabilities in the Upper Deschutes Basin

- --...-------

"'" '"' - , .. , .. lXJ'U.NAT10N

- ~.fot .. •MIJiffW

0 ........ Or ..........

.., ""

. . ,, .. ••

Inputs Simulation Model Outputs

• D

• Streamflow reductioll-ln cubic feet per second per mile

.01-.05

.05-.1

More than .1

0-~~--=~~10 MILES

"-=-=;...,_,,.;;10 KILOMETERS

0

58 u w en a: 6 w a... 1--t±l 4 u... u

~ 2 u

---

-------/,.........~ ------------------/ ................... ----

//// --From storage --Total decrease in streamflow --From decreased stream gain -- --From increased stream loss

----10 20 30 40

TIME IN YEARS

Crooked River

Existing Model Limitations

• Coarse grid (up to 10,000 ft)

• Lakes not simulated

• Limited representation of faults

• Unsaturated zone not simulated

• Intermittent streams not simulated

• Runoff component of streamflow not simulated

Old grid and stream network New grid and stream network

GSFLOW: An integrated hydrologic model that simulates:

Surface processes (PRMS)

Plant canopy interception

Snowpack accumulation, storage, and melting

Evapotranspiration

Soil moisture storage

Deep percolation and runoff

Unsaturated zone process

Groundwater flow (MODFLOW)

Time Line

Presently in the model development phase

Model calibration phase: March –May

Preliminary scenario testing: June-August

Report development, model approval and release, early 2016

Questions?

Deer Creek Fen

Region 1-Piant canopy, snowpack, surface­depression storage,

and soil zone (PRMS)

Ground-water discharge

Soil-moisture or head-dependent f low

Surface runoff

lnte rflow

Soil-moisture dependent flow

Gravity drainage Leakage

Region 3-Subsurface (unsaturated and saturated

zones) beneath soil zone (MODFLOW-2005)

Region 2-Streams and lakes

(MODFLOW-2005)

Ground-water discharge

Head-dependent flow

Figure 11. Schematic diagram of the exchange offlow amo ng the three regions in GS FLOW. The depe ndency on soil moisture and head in the comp ut ation of flow among t he regi ons also is shown .

Evaporation Sublimation Air temperature I

•it t 't' Plant canopy interception

1 Rain yI Throughfall I

I Ra in IEvaporation I

and I Snowpack I

Transp irat ion I I I

I

Trans pi ration Surface runoff I I

I

E" t "t;oo I Snowm elt Ity y to strea m or lake t I t I

Ground-water

Impervious-Zone Reservoir I ,.

Soil-Zone Reservoir

~~c~~2~~o~~ ________________ Low er zone

t Subsurface rech arge

Subsurfacerecharge Reservoir lnterflow (or subsurface

flow) to stream or lake

i- G round-water recharge

Ground-Water Reservoir

Ground-water discharge to stream or lake.,.

Ground-water sink

Figure 2. Sc hematic diagram of a watershed an d its climate in puts jprecipitat io n, air te mperature, a nd solar radiation) simulated by PRM S (modified from l ea ve sl ey and othe rs, 1983).