Intérêt de l’analyse des imageries in vivo et post mortem du … · 2018-04-04 · 3D post...

Post on 11-Mar-2020

0 views 0 download

Transcript of Intérêt de l’analyse des imageries in vivo et post mortem du … · 2018-04-04 · 3D post...

1

« Intérêt de l’analyse des imageries in vivo et post mortem

du cerveau en recherche préclinique»

Thierry DELZESCAUX

Molecular imaging research center (MIRCen)

UMR CNRS-CEA 9199

Institut François Jacob, CEA, Fontenay-aux-Roses, France

Thierry.Delzescaux@cea.fr

Laboratoire des Maladies Neurodégénératives

Hébergement et Comportement

Analyses Biologiques

Laboratoires L2/L3

Histologie

Microscopie

Imagerie TEP

Imagerie et Spectroscopie RMN

Modèles animaux

Thérapies innovantes

Imagerie cérébrale

Développement méthodologique

Application

Une plateforme dédiée à la recherche translationnelle

Molecular imaging research center

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 2

Laboratoire des Maladies Neurodégénératives

UMR 9199

Parkinson

Alzheimer

Huntington

PRECLINICAL

THERAPIES

MECHANISMS

BRAIN

IMAGING

CLINICAL

THERAPIES

Medical and socio-economic impact

Challenges:

• Mechanisms

• Therapies

• Brain Imaging

R. Glu

p76

p80

p30Pro-Calpain

+

Ca 2+

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 3

« From bench to bedside »

Cellules Rongeurs Primates Non-Humains Homme

-- - +

Jours Mois Mois/Années

++++ > 10 < 10

Années

> 100

Similarité avec l’Homme

Durée d’étude

Nombres de sujets

---- -- ++ ++++

Coût

Translational research

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 4

Autoradio-

graphy

PET

FDG, etc…

MRI

7T

HistologyCresyl, Nissl

In vivo imaging

Function Anatomy

Post mortem imaging

Anatomy Function

µ-PET (rodent) Cryostat

Cerebral imaging in rodents. MIRCen facilities

7T - 11,7T

Images

3D 3D 2D 2DDimension

Blockface

photographs

3D/2D

5

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 5

Technical limitations

Difficult to use

Recent

High cost

Longitudinal studies

3D imaging

Fast acquisition time

+

Single observation

2D imaging

Tedious

High spatial resolution

Easy to use

Low cost

Variety of stainings

+

Complementary

Advantages / Disadvantages

In vivo imaging Post mortem imaging

Before After

12

L L

In vivo / post mortem imaging techniques

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018

Photographs Autoradiography

PET MRI Photo PM anatomy PM function

FDG, etc… 1.5T, 3TCresyl, Nissl,

etc….

In vivo anatomo-functional

co-registration

(brain, whole body)

3D exploitation of the data

Statistical analysis

(intra and inter-subjects)

Background: research / applications

Merging of information acquired in vivo and post mortem:

- at microscopic and macroscopic level,

- anatomy and function.

Quantitative validation of PET (instrumentation)

Evaluation of PET abilities (follow-up)

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 7

3-D post mortem

reconstruction

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018| PAGE 8

Post mortem Sections Stained & mounted

sections

Loss of 3D

structure2D deformations

1 Tissue sample collection

2 Tissue sectioning and block-face photography

3 Serial section staining

Series

1

Series

𝒏

Block-face

photographs

4 Tissue section imaging

100 sections/brain ≈

Serial histology processing

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 9

“Banana effect”

Histological staining

Cryostat Cutting process

B

R

A

I

N

First prototype developed

3D photographic modality

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 10

+

3-D photographic volume

Sagittal view

Axial view

Coronal view

3D

R V B

3D photographic modality

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 11

Setup

Photographs New prototype:

Improved performances

3D photographic modality

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 12

Automated extraction and stacking of the sections

“Column” acquisitionSeveral dozens of sections

can be digitized at once

Histological staining

Optimized acquisition of the data

Flatbed scanner

Tissue section digitization

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 13

C

O

R

O

N

A

L

A

X

I

A

L

S

A

G

I

T

T

A

L

Photograph Cresyl violet Autoradiography Fusion: cresyl / autoradio

Boussicault et al., JCBFM, 2014

3D post mortem reconstruction – HD mouse model

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 14

Applications in Alzheimer’s disease

1) Metabolism changes

2) Amyloid load assessment

3) In vivo / post mortem co-registration

4) Future research

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 15

1) Metabolism changes

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 16

• Reconstruction strategy:

- Use of reference volume,

- Multimodality

3-D consistency,

- Photography : reconstruction +

spatial normalisation.

Photographic volume

Histological volume

Autoradiographical

volume

1) Metabolism changes in Alzheimer’s disease

• Material:

- APP-PS1 (n=3),

- PS1 control (n=4).

Hemibrain studied

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 17

MRI volume

Downloaded

volumes

Coronal viewSagittal view

Axial view

Pre-processing applied to the downloaded files

Labeled volume

Processed

volumes

Construction of a digital atlas of mouse brain

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 18

Block-face

volume

1’

3D-reconstructed

autoradiographic data

3’3D-reconstructed

histological data

2’

Stacking

1

Section-to-section

registration

2

Section-to-section

registration

3

0

780 nCi/g

1’2’

3’

MRI

volume

Atlas

volume Estimation of linear and non-linear parameters

to register the MRI to 3D-reconstructed data

Warping of the atlas using estimated deformation

parameters

A- Registration strategy[a,b,c]:

Lebenberg et al.,

NeuroImage

2010

Lebenberg et al.,

ISMRM and ISBI

conferences

2009

Analysis of PM dataset using a 3D digital atlas

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 19

Détection automatique et sans a priori, à l’échelle des voxels,

de différences significatives d’intensité entre deux groupes d’images

Technique principalement développée et utilisée chez l’Homme en imagerie in vivo

Analysis of PM dataset using voxel-wise approach

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 20

• Synthesis of glucose changes detected:

- : cortex Cg, hippocampus Rad and Mol, thalamus Th,

- : hippocampus CA1, CA3, Pir cortex,

• Limitations:

- Huge amount of data,

- Reconstruction step,

- A single measurement.

• Interests:

- Without anatomical a priori,

- Possibility to perform exploratory studies (identification of

structures / sub-structures involved),

- Anatomo-functional data, high resolution (~20-40 µm).

Voxel-wise metabolism analysis [1/2]

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 21

Improve our understanding of

pathophysiological processes

Possibility to quantitatively

evaluate drug efficacy / new

therapeutic strategies

Possibility to apply this

methodology to other species

(mouse, rat, microcebe, etc.)

• Surface rendering

Voxel-wise metabolism analysis [2/2]

3-D

Hippocampus

Dubois et al, NeuroImage, 2010

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 22

Photographical

volume

Histological

volume

Autoradiographical

volume

3D digital atlas

Lebenberg et al, NeuroImage, 2010

3D post mortem reconstruction

Automated detection of regions presenting metabolic changes

Automated labelling of these regions based on the use of digital atlas

Dubois et al, NeuroImage, 2010

Statistical Parametric Mapping analysis (SPM)

without anatomical a priori

Lebenberg et al,

NeuroImage, 2011

Combined approaches

Detection of metabolic changes in AD mouse model

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 23

Extend 3D analysis from quantitative mesoscopic

to qualitative microscopic data

• First group studies using 3D histology were performed:

1) in rodents (rats, mouse),

2) on autoradiographic data.

• Continuous / quantitative information / mesoscopic scale / 3D reconstruction

Autoradiographic section

• Sparse / qualitative information / meso-micro scale / 3D reconstruction

Amyloid plaques staining

AD

biomarkers

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 24

2) Amyloid load assessment

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 25

High throughput post mortem studies

1) Histology production

2) Digitization process

3) Hardware facilities

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 26

Aβ plaque IHC

segmented volume

BBB leakage IHC

segmented

volume

• Histology volumes are in the same referential

• Histology volumes are segmented

Segmentation

Section to section

2D registration

Image stacking

Series

1

Series

n

Histological images

…Block-face

photographs

Neuropathology image segmentation

Spatial reference

Aβ plaque IHC BBB leakage IHC

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 27

Ontology-based analysis (1/3)

6E10 IHC segmented

volume

IgG IHC segmented

volume

• Histological volumes are segmented

• Segmented volumes are in the same spatial

referential

• Regional measures output

Segmentation

Data output

Atlas based quantification

Section to section

2D registration

Image stacking

Series

1

Series

n

Histological images

Histological images stacks

Block-face

photographs

Spatial reference

Mouse brain

atlas

3D registrationLebenberg et al., NeuroImage 2010

http://www.mouseimaging.ca/technologie

s/C57Bl6j_mouse_atlas.html

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 28

Ontology-based analysis (2/3)A

tla

s M

RI

Atla

s lab

els

Blo

ck-f

ace

Ph

oto

gra

ph

y

vo

lum

e

Nis

slsta

inin

g

vo

lum

e

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 29

Ontology-based analysis (3/3)A

tla

s M

RI

Atla

s lab

els

Blo

ck-f

ace

Ph

oto

gra

ph

y

vo

lum

e

Nis

slsta

inin

g

vo

lum

e

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 30

Violet de crésyl 6E10 IHC

Plaques amyloïdes Atlas cerveau souris

3D analysis – Amyloid load assessement

Vandenberghe et al.,

Sci Rep, 2016

Carte quantitative

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 31

3) In vivo – post mortem

Co-registration

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 32

M. Dhenain team

(post mortem MRI)

In vivo / post mortem co-registration

20 mois14 mois

6 mois 9 mois

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 33

In vivo / post mortem 3D co-registration

Fusion

Photo

MRI

Photo

contour

In vivo

MRI

Coronal 1 Coronal 2 Axial 1 Axial 2 Sagittal

Photo

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 34

Coronal Axial Sagittal

Amyloid

density

+

MRI

3D view

BHE

leakage

+

MRI

Vandenberghe et al., Sci Rep, 2016

Santin et al., Front Aging Neuro, 2016

In vivo / post mortem 3D co-registration

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 35

4) Future research

Microscopic level

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 36

ImagesResolution

(xyz, µm)

Approximate

number of

voxels

Approximate

file size

(gygabytes)

7T mouse brain MRI

scan30 30 30 107 0.02

Block-face photography

volume

(100 sections)

30 30 120 107 0.02

Mesoscopic IHC volume

(100 sections)5 5 120 108 1

Microscopic IHC

volume

(100 sections)

0.20 0.20 120 1011 1000

Resolution (m)

110-110-210-310-410-510-610-710-810-9

3D whole-brain histopathology

nm µm mm m

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 37

Multiple markers 3D histopathology [1/3]

Information

acquired at

cellular level

Analysis

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 38

Multiple markers 3D histopathology [2/3]

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 39

Multiple markers 3D histopathology [3/3]

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 40

Vandenberghe et al., Sci Rep, 2016

Chung et al, Nature 2013

Lein et al, Nature 2007

Clarification3D histology

Dauguet et al., J Neurosci Methods 2007Dubois et al., Neuroimage 2010

Lebenberg et al, NeuroImage 2010

Yang et al, Frontiers in Neuroanatomy, 2013

High performance computing

Bridging the gap between microscopic

and macroscopic scale

iDISCO

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 41

Acknowlegment

• Jean-François Mangin• Denis Rivière• Yann Cointepas• Vincent Frouin• Clara Fischer• Yann Leprince

J. Dauguet, A. Dubois, J. Lebenberg, M. Vandenberghe,

Y. Balbastre, Z. You

• Nicolas Souedet• C. Clouchoux• C. Bouvier• Anne-Sophie Hérard• Didier Thenadey

MINDt team (M. Dhenain)

• Philippe Hantraye• Emmanuel Brouillet• Gilles Bonvento• Romina Aron-Badin• Carole Escartin• Caroline Jan• Et tous les autres… en particulier

Programme transversal Technologies pour la Santé (CEA)

T. Delzescaux, CEA-MIRCen , FLI - WP4. "Imagerie multi-modale" - 2018 | PAGE 42