Intersolar, 21 June 2018 Andrea Viaro, Head of Technical ... · Total Quality Management 1....

Post on 19-Jul-2020

1 views 0 download

Transcript of Intersolar, 21 June 2018 Andrea Viaro, Head of Technical ... · Total Quality Management 1....

PID: an invisible danger for solar systems and how to prevent it

PV Magazine Quality RoundtableIntersolar, 21st June 2018

Andrea Viaro, Head of Technical Service & Product Mgmt. Europe

2

Total Quality Management

1. Comprehensive QC/QAacross entire value chain

2. CertifiedQC/QA process, methodology, acc.criteria, devices and staff

3. 

Advancedinspection equipment & data mgmt. system

4. AccurateQC protocols

5. Consistentcontrol results

6. Globally‐distributedcontrol

3

IEC Test Sequence

Long-Term Performance: Accelerated Aging

4Reference : DNV-GL

Thermal Cycle 8004x MORE SEVERE THAN STANDARD

El. Connections Stress TestResults: -0.85% (average)

Damp Heat 30003x MORE SEVERE THAN STANDARD

Laminate Stress TestResults: -2.01% (average)

MinimumIEC requirement

Jinko Solar

5

PID Main Factors

PID’S MAIN 

FACTORS

Climate weather cond.

System 

Module

Cells

-Topology -Module position-System voltage

Encapsulant and module design (frame, isolation…)

Temperature, humidity

Anti-Reflecting Coating

6

PID Phenomenon

Power degradation due to a potential of the module relative to ground

Leakage current through the encapsulant and glass

Accumulation of positive charge on cell surface

FF, Vmpp and Impp ↓↓

Frame Glass

Eva Cell

+ + + + + + + + + + + + + + + + +  

7

PID Environment Conditions

8

PID System Topology

SYSTEM LEVELInverter with transformer

• Negative pole functional grounding for p-doped cells

• Positive pole functional grounding for n-doped cells

Transformer less inverter

•“Soft grounding” required• Overnight recovery possible

‐1000

‐800

‐600

‐400

‐200

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16 18 20 22

Potential to grou

nd (V

)

Module position in the string

(‐) Grounded

Floating

(+) Grounded

9

PID Effect

Thermal Picture with “L/U‐shaped” Pattern Effects on IV‐Curve (Rsh, FF, Vmpp, Impp, Voc)

EL  before and after PID phenomenon Inverter wake‐up & drop‐off (Voc)

(Floating System and PV modules installed in the most negative part of the string)

‐0.2

0

0.2

0.4

0.6

0.8

1

6 11 16

10

PID case study

• Installation peak power: 100kW

• Date of installation: 2012

• Location: Coastal environment

• Panel type: JKM-240P60 (not anti-PID certified)

• Solution implemented: - PID recovery system operating overnight- String polarity swap to speed up the recovery time

• Result: PV system PR recovered up to initial value after about 6 months

11

PID case study

106I-V@STC 106I-V Nominal 106Pwr@STC 106Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

12

PID case study

104I-V@STC 104I-V Nominal 104Pwr@STC 104Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

13

PID case study

102I-V@STC 102I-V Nominal 102Pwr@STC 102Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

14

PID case study

98I-V@STC 98I-V Nominal 98Pwr@STC 98Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

15

PID case study

94I-V@STC 94I-V Nominal 94Pwr@STC 94Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

16

PID case study

91I-V@STC 91I-V Nominal 91Pwr@STC 91Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

17

PID case study

89I-V@STC 89I-V Nominal 89Pwr@STC 89Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260Reduced  FF

-11% Pmax

18

PID case study

85I-V@STC 85I-V Nominal 85Pwr@STC 85Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260Reduced  FF

-16% Pmax

19

PID case study

84I-V@STC 84I-V Nominal 84Pwr@STC 84Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260Reduced  FF

-22% Pmax

20

PID case study

79I-V@STC 79I-V Nominal 79Pwr@STC 79Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260Reduced  FF

-17% Pmax

21

PID case study

78I-V@STC 78I-V Nominal 78Pwr@STC 78Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260Reduced  FF

-14% Pmax

22

PID case study

73I-V@STC 73I-V Nominal 73Pwr@STC 73Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260Reduced  FF

Lower Voc

-28% Pmax

23

PID case study

71I-V@STC 71I-V Nominal 71Pwr@STC 71Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

Lower Rsh

Lower Voc

Reduced  FF

-49% Pmax

24

PID case study

69I-V@STC 69I-V Nominal 69Pwr@STC 69Pwr Nominal

Voltage [V]0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Cur

rent

[A]

0

1

2

3

4

5

6

7

8

9

Power [W

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

Lower RshReduced  FF

Lower Voc

-37% Pmax

25

PID case study

PV plant PR decreasing trend during PID development phase

26

PID case study

PV plant PR increasing trend after recovery solution implementation

27

PID-Resistance: The “Eagle” Series

First PID-resistant Module(IEC62804 Standard)

85℃/85% RH, 192 hrs.

No Corrective or Preventive Actions for PID

Typical Installation Topology and Flexibility

Maximized Production

28

Andrea ViaroHead of Tech. Service & Product Mgmt. Europe

Email: andrea.viaro@jinkosolar.com

Mob. +41.795598898

Web: www.jinkosolar.eu