International Conference “Recent Problems in Computational Mathematics and

Post on 05-Jan-2016

42 views 0 download

Tags:

description

International Conference “Recent Problems in Computational Mathematics and Mathematical Modeling” November, 29 – 30, 20 10 , Moscow , Russia. Past, Present and Future of Atmospheric Circulation Studies at INM RAS. V.P. Dymnikov Institute for Numerical Mathematics, RAS - PowerPoint PPT Presentation

Transcript of International Conference “Recent Problems in Computational Mathematics and

International International ConferenceConference““Recent Problems in Computational Mathematics and Recent Problems in Computational Mathematics and

Mathematical Modeling”Mathematical Modeling” November, 29November, 29 – – 30,30, 20 201010, , MoscowMoscow, , RussiaRussia

Past, Present and Future of Atmospheric Circulation Studies

at INM RAS

V.P. DymnikovV.P. Dymnikov Institute for Numerical Mathematics, RAS E-mail: dymnikov@inm.ras.ru

Introduction - I

• In the atmospheric sciences there are two main problems – weather prediction and climate change. These problems are connected each other.

• Let’s imagine that we have ideal mathematical model of climate system.

• Let A- global attractor of this model, m* –probabilistic ergodic invariant mesure on A. Then :

• Weather prediction : convergence of m(t) = B(m(t0)) to m*

Introduction - II• Climate change : delta m*• Mean rate of convergence m(t) to m* on A is

climatic characteristic and defines the weather predictability. The predictability time is defined, in particular by energy and enstrophy transfer along spectra.

• Therefore I’l consider our achievements in both problems.

• Because the roots of INM belong to Computer Centre of SB of AS I’l begin the consideration of past from the period of our work in CC.

Large-scale hydro-thermodynamics of the atmosphere uF

RT

av

a

uf

dt

du

cos

1tg ,

vFRT

au

a

uf

dt

dv

1

tg ,

RT

,

0cos

cos

1

vu

at,

Tp

Fa

v

a

u

tc

RT

dt

dT

cos ,

),( ECFdt

dqq

where

a

v

a

u

tdt

d

cos.

Subgrid-scaleprocesses:

parameterization

Parameterization of subgrid-scale processes • Turbulence in the atmospheric boundary

layer, upper ocean layer and bottom boundary layer

• Convection and orographic waves• Diabatic heat sources (radiative and phase

changes, cloudiness, precipitation, etc.) • Carbon dioxide cycle and photochemical

transformations • Heat, moisture and solute transport in the

vegetation and snow cover • Production and transport of the soil methane• Etc.

Weather prediction (1965-1969-1973-1993)-I

• Model: Primitive hydrostatic hydrodynamic

equations, Transport of humidity fields, Boundary layer (calculation of air surface

temperature and wind), Precipitation

Weather prediction (1965-1969-1973-1993)-II

• What was original (complitly new)? 1. Splitting-up method of solution (transport,

adaptation, physics) 2. Reduction on three-dimensional adaptation

system to the few two-dimensional problems 3. New equation for the transport humidity,

condensation and precipitation 4. SOS-scheme (control energy scheme)

1 2( )mf q q aq

Weather prediction (1965-1969-1973-1993)-III

• Project PASP (Hydrometeorological Institute, Novosibirsk , 1971-1973 ):

Data –analysis – model –postprocessing (Computer Vesna, 200 Kflops, Levin) • Present time: Semi-Lagrangian operative model of medium-

range weather forecast (INM – HMC – Meteo-France )

Coupled model of general circulation of the atmosphere and ocean ( 1975-1980) - I

• What was original (new )? 1. Symmetrization of primitive equations 2. Exact conservation of energy by finite-difference

approximation (adiabatic approximation ) 3. Original parameterizations of all sub-grid physical

processes 4. Splitting-up method 5. Factorization of implicit scheme 6. Reduced grid for iteration processes

0S

dSt

cos ( cos )M a u a

1

1

0

cosS

S S

MdSd a dSt

1 1

0 0 0

( ) .S p u v T

S

K c T d dS uF vF F d dSt

0, 0,S u v FF F F

1

0

0.p

S

K c T d dSt

Conservation laws

1. Mass conservation

2. Angular momentum balance

3. Total energy balance

If

then there is total energy conservation law

Для адиабатической атмосферы интегральный закон сохранения полной энергии не является квадратичным, так что выполнение его в конечномерном аналоге не обеспечивает вычислительной устойчивости. Если сделать замену переменных

1, 1, ,u u v v T

то закон сохранения будет иметь вид2 2 211 1

0

20,

2p

S

u v cd dS

t

так что систему уравнений термогидродинамики атмосферы можно представить в виде:

0Kt

, 0.K u

Схема Кранка-Николсон обеспечивает точный закон сохранения энергии для конечно-мерной аппроксимации, если оператор задачиаппроксимируется кососимметрической матрицей (что делается элементарно):

( )K

1 1

0.2

i j i i

uK

Если ,ih hK K u

то метод расщепления также обеспечивает такое сохранение полной энергии (квадратичной формы), что обеспечивает и вычислительную устойчивость. Модель циркуляции атмосферы и океана на основе этой идеи была построена и описана в монографии (Г.И. Марчук, В.П. Дымников, В.Б. Залесный, В.Н. Лыкосов, В.Я. Галин. Математическое моделирование общей циркуляции атмосферы и океана. – Л.: Гидрометеоиздат, 1984 г., 320 с.)

Coupled model of general circulation of the atmosphere and ocean ( 1975-1980) - II

• First version -10 degrees in longitude, 6 degrees in latitude, 3 vertical levels (10x6x3)• Shortcomings: 1. Upper boundary condition (much better for so crude

approximation to have the boundary condition on tropopouse)

2. Wrong transfer energy along spectra for “real” orography 3. No local balances• G.I. Marchuk, V.P. Dymnikov, V.B. Zalesny, V.N. Lykossov,

V.Ya. Galin “Mathematical modeling of general circulation of the atmosphere and ocean“, 1984, Leningrad, Gidrometeoizdat

Coupled model of general circulation of the atmosphere and ocean ( 1975-1980) - III

• Next version: 1. conservation of potential enstrophy in two-

dimensional approximation 2. Semi-explicit scheme in time• Shortcoming: broad stencil (smoothing of high-frequency mid-scale

variability)• Resolution: 5x4x21 (good results for 1x1x21)• AMIP 1, AMIP2

Среднегодовая ошибка ТПО в модели

Давление на уровне моря в декабре-феврале по данным модели (вверху) и наблюдений (внизу)

Температура в декабре-феврале по данным модели (вверху) и наблюдений (внизу)

U-компонента скорости ветра в декабре-феврале по данным модели (вверху) и наблюдений (внизу)

Среднеквадратичное отклонение ТПО в районе Эль-Ниньо по данным модели (вверху) и наблюдений (внизу)

Mathematical problems of climate theory - I

1. Global solvability2. Existence of global attractor. Estimates of dimension3. Dynamics on attractor. Local and global Lyapunov exponents4. Stability of attractor (set and ergodic measure)5. Response operator to small external forcing (FDT-theorem, periodic orbits)

Mathematical problems of climate theory - II

6. Possibility of calculations of response operator for real climate system

7. Approximation of attractor8. Calculation of stationary points and periodic orbits on attractor9. Approximation of atmospheric regimes by

stationary points and periodic orbits10. Stabilization of trajectories

Оператор отклика для первого момента (нелинейная теория)

Нелинейная модель:

( - белый шум по времени)

«Возмущенная» модель:

)()( tuBdtdu

ftuBdtud

)()(

)(t

Стационарный отклик

Уравнение Фоккера-Планка для плотности инвариантной меры

имеет единственное стационарное решение .

fMu

uuu

))(( uBdivt

*

В первом приближении по

В случае нормального распределения

jj

t

j

iiftdt

utuu

0

*

*)(

1)(

dCCM )0()( 1

0

f

Отклик, рассчитанный с помощью CCM0 (справа) и восстановленный с использованием M-оператора (слева). Аномалия нагревания задана на (60E, 00N). Верхний рисунок – 0.336, нижний - 0.811

Восстановление отклика CCM0 на синусоидальную аномалию нагревания

If we know М we can find the forcing producing given response in the system statistics

.fMW

.1 WMf

Model response (right) onto the heating (top left) was multiplied by the inverse response operator. Reconstructed forcing is shown on the (bottom left)

Apply the forcing to the model, get

Reconstruct the forcing as

WM 1

W

How it works for CCM0?

Projects

• Modeling of climate and climate change• Mathematical modeling of regional climate

processes• Construction of computational core for Earth

System Model of new generation (petascale and exascale computations)

• Mathematical problems of climate theory

Thank you for your attention!