Intermolecular Forces - WordPress.com · 2010-07-02 · Between Neutral Molecules (van der Waals...

Post on 08-Aug-2020

7 views 0 download

Transcript of Intermolecular Forces - WordPress.com · 2010-07-02 · Between Neutral Molecules (van der Waals...

Intermolecular Forces

Opposites ♂♀ Attract

or

Viva la difference (ooh lah lah …)

1 © Prof. Zvi C. Koren 20.07.2010

Very restricted motion

Short- range order

Long-range order

Restricted motion

Short-range order

Long-range disorder

Nearly unrestricted

motion

Short-range disorder

Long-range disorder

Phases of Matter

Solid

(crystalline)

Intermolecular Forces & Density:

GasLiquid

> >>

2 © Prof. Zvi C. Koren 20.07.2010

BUT:

Water is Weird (see later):

ds < dl

For a given quantity:

Vgas >> Vliquid > Vsolid

(except for water)

Differences in Volume Between the States of Matter

(Phases)

For example for water:

Liquid:

d = 1 g/mL V = 18 mL/mole

Gas (assume ideal):

@STP V = 22.4 L/mole

Vgas ~ 103Vliquiddgas << dliquid < dsolid

Compressibility dV/dP:

gas >> liquid > solid

3 © Prof. Zvi C. Koren 20.07.2010

1. Why can a gas fill the entire container?

2. Why can a condensed phase (solid, liquid) exist?

3. Why can liquids (and powdered solids) be poured?

Answers1. Intermolecular forces (weak) between gas molecules

2. Intermolecular forces between solid molecules (and

between liquid molecules)

3. Intermolecular forces between liquid molecules

Questions

4 © Prof. Zvi C. Koren 20.07.2010

Between Neutral Molecules (van der Waals Forces ):Dipole – Dipole

Dipole – Induced Dipole

Self-induced (or instantaneous) Dipole – Induced Dipole

(“London force”)

Involving an Ion:Ion – Ion (in salts, crystal lattice)

Ion – Dipole

Note: These are INTERmolecular “forces”, not intramolecular “bonds”

Types of Intermolecular Forces

(Each type will now be discussed)

5 © Prof. Zvi C. Koren 20.07.2010

μ

moment dipole μ

van der Waals Forces – 1:

Dipole – Dipole Forces

H

H

O

-+

H

H

O

H

H

O

H Cl H Cl H Cl

μ

Other configurations are also possible

6 © Prof. Zvi C. Koren 20.07.2010

van der Waals Forces – 2:

Dipole – Induced-dipole Forces

O2(g) dissolves (though slightly) in water. Why?

μ

H

H

O OO

OO

H

H

O - -+

Permanent dipole Induced dipole

= Polarizability

= f(total # and locations of e’s)

7 © Prof. Zvi C. Koren 20.07.2010

::

::

Solubility (moles/m3) in seawater

00C 240C

He 0.36 0.31

Ne 0.42 0.36

Ar 1.7 1.0

Kr 3.2 1.9

Xe 6.1 3.1

N2 0.80 0.54

O2 1.9 1.1

CO2 65 32

Solubilities of Some Gases in Water

Solubility (at 20 oC), mg/100 g H2OGas

0.160H2

0.190N2

0.434O2

729Cl2

8 © Prof. Zvi C. Koren 20.07.2010

van der Waals Forces – 3:

Instantaneous-dipole – Induced-dipole Forces

(London forces)

OO

OO -+

Self-induced dipole

Instantaneous dip.

= Polarizability = f(total # and locations of e’s)

OO -+ OO -+

Induced dipole

Equilibrium: NO dipole

9 © Prof. Zvi C. Koren 20.07.2010

Boiling (or Vaporization):

Molecule–Molecule(l) Molecule(g) + Molecule(g)

10 © Prof. Zvi C. Koren 20.07.2010

Summary Questions

What forces exist between two polar molecules?

What forces exist between a polar and a nonpolar molecule?

What forces exist between two nonpolar molecules?

11 © Prof. Zvi C. Koren 20.07.2010

(N, O, F)-H (N, O, F)"נוף הנוף"

Hydrogen Bonding

(Super Dipole–Dipole Force)

- + -

H-bond

CH3CH2OH, ethanol

Boiling Point = 78 oC(CH3)2O, dimethyl ether

Boiling Point = –25 oC

--

+ -

12 © Prof. Zvi C. Koren 20.07.2010

+

Boiling Points of Nonmetal Hydrides

Tb

Period2 3 4 5

0

100H2O

H2Te

HF

HINH3

SbH3

SnH4

CH4

S

Se

Compare all 3 forces

for each sample

Note: of H2O = 1.9 D, D=Debye

13 © Prof. Zvi C. Koren 20.07.2010

Snow

flake

The Weird Properties of Water

14 © Prof. Zvi C. Koren 20.07.2010

15 © Prof. Zvi C. Koren 20.07.2010

Crystal structure of hexagonal ice (Wikipedia)

16 © Prof. Zvi C. Koren 20.07.2010

Ion-Ion Forces

Na+ Na+

Ionic Forces:Coulomb’s Law קולוןחוק Beween Two Charges

r

qqkU

21

dr

dUF

2

21

r

qqkF

Note: In the Force equation: r-2. In “U”: r-1.

TWO factors are important: “q1•q2” and “r”

Compare the melting points of:

LiF vs. KI and MgO vs. NaCl.

F = forcer = distanceq = charge = n·e

U = potential

energy

Melting (Fusion): M+X–(s)

Repulsion

Repulsion

Attraction

Na+Cl-

Cl- Cl-

M+(l) + X–(l)

Li

Na

K

F

Cl

Br

I

17 © Prof. Zvi C. Koren 20.07.2010

U

F- Cl- Br- I-

Li+

Na+

K+

Potential Energy (“Lattice Energy”) of Ionic Pairs

Recall Coulomb’s Law for U:

r

qqkU

21

Li

Na

K

F

Cl

Br

I

18 © Prof. Zvi C. Koren 20.07.2010

Also: H2O above and below the plane

Cl–

Hydration of Ions

Coordination Number for each ion = 6

Water is the Ligand

62O)Na(H , aquo complex of Na+, and

Ion-Dipole Forces

HH

OH

H

O

HH

OH

H

ONa+

- -

-

-

What is the meaning of “Na+(aq)” and “Cl–(aq)”?62O)Cl(H

H

H

O+

HH

O

HH

O

+

+

+

H

H

O

HH

O

-

+

Dipole

moment

19 © Prof. Zvi C. Koren 20.07.2010

Hydration reaction:

M+ + (H2O)n M(H2O)n+ + Heat

1 rH

Recall Coulomb’s Law,

(though here it’s not exactly the same equation):

Heat (or Enthalpy) of Hydration,

Hhyd (kJ/mol)

Ion Radius (pm)Cation

–51590Li+

–405116Na+

–312152K+

–296166Rb+

–263181Cs+

r

qqkU

21

20 © Prof. Zvi C. Koren 20.07.2010

Energies of Interaction (U)

Type of Interaction Factors Responsible Distance- U(kJ/mole)

for the Dependence

Interaction of U

Chemical

(intramolecular):

Covalent bond (single) orbital (wave) overlap 100 – 600

Ionic Forces:

Ion – Ion Charges r-1 400 – 4000

Ion – Dipole Charge & Dipole moment r-2 40 – 600

van der Waals Forces:

Dipole – Dipole (regular) Dipole moments r-3 5 – 25

H-bond 10 – 40

Dipole – Induced-dipole Dipole m. & Polarizability r-6 2 – 10

Self-induced dipole –

Induced-dipole

(“London”) Polarizabilities r-6 0.05 – 4021 © Prof. Zvi C. Koren 20.07.2010

Molar Mass is a simple indicator of the polarizability of a molecule

IMF’s as a Predictor of the State of Matter (at room temp.)

22 © Prof. Zvi C. Koren 20.07.2010

Vaporization Condensationl g g l

23 © Prof. Zvi C. Koren 20.07.2010

Hvap > 0, endothermic

Properties of Liquids:

Vapor Pressure & Boiling Point

Hcond < 0, exothermic

211

2 11

TTR

H

P

Pn

vap

(y = a •x + b)

CTR

HnP

vap

1 nP

1/T

••

••

slope = a

Volatility:

Which is the

more volatile

liquid?

Vapor Pressure vs. T

Clausius-Clapeyron Equation:RTHvapkeP

/

24 © Prof. Zvi C. Koren 20.07.2010

In general: As Tb , ΔHvap

Trouton’s Rule: ΔHvap / Tnb constant, T = [K]

25 © Prof. Zvi C. Koren 20.07.2010

At the Boiling Point, Tb (or b.p.): Pvap = pex + “dP”

“ex” = external

Normal Boiling Point, Tnb or n.b.p.: Pex = 1 atm

[Constant Pressure: P = f/A; f = w = mg]

s s l l l v g

vaporization

fusion

100

0

Tem

p.

(0C

)

Time (min)100 600

Heating/Cooling Curve for Water.

1 mol water is heated from –100C to 1100C.

A constant heating rate of 100 J/min is assumed.

Pistonm

26 © Prof. Zvi C. Koren 20.07.2010

Calculation of the Heats Involved With Each Step

in the Heating/Cooling Curve

vaporization

fusion

100

0

Tem

p.

(0C

)

Time (min)

100 600

Value for H2ONameSymbol

1.00 cal/g·deg

4.18 J/g ·deg

specific heat capacity

(of liquid)C(l)

18.00 cal/mol·deg

75.2 J/mol ·deg

molar heat capacity

(of liquid)

333 J/gheat of fusionΔHfus

2250 J/gheat of vaporizationΔHvap

)( lC“C-bar”

27 © Prof. Zvi C. Koren 20.07.2010

Find the values of C(s) and C(g) of H2O

critical point(374.10C, 218.3 atm)

@ T > Tc, “supercritical fluid”

Phase Diagram of Water

28 © Prof. Zvi C. Koren 20.07.2010

Gibbs Phase Rule:

F = C – P + 2F = Degrees of Freedom

2: surface (2-D)

1: curve (1-D)

1: point (0-D)

C= # of Components

P = Equilibrium Phases

Phase Diagram of Carbon Dioxide

-780C

1

(Tc,Pc)

“Dry Ice”

29 © Prof. Zvi C. Koren 20.07.2010

Energy required to break through the surface,

or

Energy required to disrupt a drop of liquid and spread the

material out as a film (to increase surface area).

@200C:

C2H5OH: 2.2 x 10 -2

H2O: 7.3 x 10-2

Hg: 46 x 10 -2

Surface molecules

(net inward force)

Interior

molecules

“skin”

More Liquid properties:

Surface Tension, (J/m2)

30 © Prof. Zvi C. Koren 20.07.2010

meniscus

Glass(silica: polar

Si-O bonds)

cohesive forces:

H2O – H2O

adhesive forces:

H2O – Glass

adhesive f. > cohesive f.: cohesive f. > adhesive f.

Hg

(concave)

(convex)

ad. f. = co. f. + gravitational f.

Glass is hydrophilic Mercury is hydrophobic

More Liquid properties:Capillary Action

31 © Prof. Zvi C. Koren 20.07.2010

Measures a liquid’s resistance to flow (time necessary)

Glycerol has 2 OH groups,

2 H-bonds possible

Other factors besides intermolecular forces need to be considered:

Length of molecular chain;

long chains become floppy and become entangled with one another.

More Liquid properties:Viscosity

32 © Prof. Zvi C. Koren 20.07.2010