IN5240 RF Amplifier Part 3

Post on 13-Jan-2022

15 views 1 download

Transcript of IN5240 RF Amplifier Part 3

Institutt for Informatikk

IN5240 RF Amplifier Part 3

Sumit Bagga*, Torleif Skår and Dag T. Wisland**

*Staff IC Design Engineer, Novelda AS**CTO, Novelda AS

Institutt for Informatikk

Direct-RF Receiver

Receiver comprises high-pass filter (HPF) for interference rejection, impedance and noise-matched low-noise amplifier (LNA), and high-speed analog-to-digital converter (ADC)

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

LNAHPF

ADC

Institutt for Informatikk

Design Aspects

• Specifications– Gain, noise figure, bandwidth, impedance and noise

match, linearity, stability, group delay and power consumption

• Configuration– Single-ended, single-ended to differential, fully

differential or pseudo-differential

• RF design, single-stage amplifier are preferred– Common-source or common-gate

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Performance Metrics

• ‘Dominant’ input device suppresses noise contributed subsequent blocks à ↑ gain– Trade-off gain for linearity

• Optimize input device for lowest noise figure– NF < 2 dB à CS-stage w/ 𝑔! ≫ "

#$Ω and minimum

gate resistance, 𝑅%• Cover bandwidth specified by standard• Conjugate matching at the input

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

LNA Topologies

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Common-Source (CS) Common-Gate (CG) Broadbandw/ CG (Cascode)

Resistive feedback

Inductive load

Inductive degeneration

w/ CG

Inductive load

Feedback

Feedforward (Boosted CG)

Noise-cancelling

Reactive cancelling

Institutt for Informatikk

Performance Metrics

• ‘Dominant’ input device suppresses noise contributed subsequent blocks à ↑ gain– Trade-off gain for linearity

• Optimize input device for lowest noise figure– NF < 2 dB à CS-stage w/ 𝑔! ≫ "

#$Ω and minimum

gate resistance, 𝑅%• Cover bandwidth specified by standard• Conjugate matching at the input

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

ECE145A/ECE218A AMPLIFIER DESIGN

12/14/07 6 Prof. Stephen Long, ECE/UCSB

Ref. G. Gonzalez, Microwave Transistor Amplifiers, Analysis and Design, Second Ed., Wiley, 1997.

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Small-Signal Model

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

CS, CG and CD

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

CG Power-to-Voltage Amplifier

• Inductive loading à tuned parallel resonance – Frequency selectivity to remove

out-of-band interferers– Current magnification (𝑸 & 𝑰𝑳)– No voltage drop

𝑍! ≈ 1/𝑔"

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Transformer Layout contd.

Monolithic Transformers for Silicon RF IC Design, John R. Long, 2000

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Transformer Model contd.

𝑣𝑜 =𝑘2𝐿1𝐿1

𝐿2𝑀 𝑣𝑖 =

𝑘2𝐿2𝑀 𝑣𝑖 =

𝑘2𝐿2𝑘 𝐿1𝐿2

𝑣𝑖 = 𝑛𝑘𝑣!

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Transformer Model

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Monolithic Transformers for Silicon RF IC Design, John R. Long, 2000

𝑛 =𝑣'𝑣(=𝑖(𝑖'= 𝑙'/𝑙(

𝑘 =𝑀𝑙'/𝑙(

𝑛/𝑘 = 𝑙'/𝑀

Institutt for Informatikk

Z Parameters

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Transformer Layout

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Broadband LNA w/ LC-Ladder

Cascode gain cell, input filter, and output buffer

A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 m CMOS, M. Reiha, ’07 (Ref.: [4-6])

A. Bevilacqua, A. Ismail, F. Lee

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Resistive-Feedback Preamplifier

L 50 Ω input match, low NF and low Pdc

A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 m CMOS, M. Reiha, ’07 (Ref.: [4-6])

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

2-Stage LNA w/ Idc Reuse

gm-boosting input stage and transimpedance amplifier

INF5481: RF kretser, teori og design Dag T. Wisland

A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 m CMOS, M. Reiha, ’07 (Ref.: [4-6])

Institutt for Informatikk

Negative Current Feedback CS-LNA

β = nZi ≅ n/gm

T1 is non-inverting. Current sensed via T1,p is negatively fed back and applied in parallel at the input via T1,s

T1,s

RFi M1

RL

RFo

VDD-ifb

T1,p

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Gm = gm(1+nk); nk < 1Zi ≅ n/(Gm)

T1 is inverting. Current sensed via T1,p is negatively fed back and applied in parallel at the input via T1,s

T1,s

RFi M1

T1,p

RL

RFo

VDD-ifb

+vin-

-vin/n+

A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 μm CMOS, M. Reiha, ‘07

gm-Boosted CS-LNA

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

gm-Boosted CS-LNA w/ Trifilar

Gm = gm(1+nk)Zi ≅ n/(Gm)

T1 is inverting. Assume kpt ≅ 0 and kps & kst ≅ 1. Total gate-source voltage is ≅ vin + vin/n2 - (-vin/n1)

T1,s

RFi

T1,t

M1

T1,p

RL

RFo

VDD-ifb

+vin-

- vin/n2 +-

vin/n1+

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

gm-Boosted CS-LNA w/ Auto-Transformers (AT)

Gm = gm(1+n2k2)Zi ≅ n1,2/(Gm)

2 ATs w/ T2 > T1- +V feedforward- -I feedback

T2,s

RFi,+

T2,pM1

T1,pT1,s

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Basic CG-LNA

NF ≥ 2 dBZi ≅ 1/gm

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Feedforward gm-Boosting

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

[Liscidini, ISSCC, 2015]

Institutt for Informatikk

Gm-Boosted CG-LNA

Gm = gm(1+nk)Zi ≅ 1/(gm(1+nk))

Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18 µm CMOS, X. Li, ‘05

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Positive Current Feedback CG-LNA

β = 1-(k/n)Zi ≅ 1/(gm(1-k/n))

Common Gate Transformer Feedback LNA in a High IIP3 Current Mode RF CMOS Front-End, A. Liscidini, ‘06

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Feedback & Feedforward

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

• [Li, 2005] – 𝑔"-boosted CG-LNA with transformer feedforward loop– Feedforward factor is (1 + 𝑘𝑛), where n is the turns

ratio and k is the coupling coefficient

• [Liscidini, 2005] – CG-LNA with positive transformer feedback loop– Feedback factor is (1 − 𝑘/𝑛)

Institutt for Informatikk

Trifilar CG-LNA

LP-LS: Inv.LP-LT: Non-Inv.LP-LT: Inv.(stability, kT,S à 0)

Zi ≅ 1/(gm(1+nP,SkP,S+nT,SkT,S)(1-kT,P/nT,P))

P1

P2

P3

P4

P5

P6

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Trifilar Design

P1P2 P3

P4

P5P6

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

S21 and S11 in 55 nm CMOS

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Institutt for Informatikk

Key References

1. A. M. Niknejad, EECS 142 and 2422. A. Liscidini, “Fundamentals of Modern RF

Receivers,” ISSCC 20153. N. Andersen, “A 118-mW Pulse-Based Radar

SoC in 55-nm CMOS for Non-Contact Human Vital Signs Detection,” JSSC, 2017

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga