Impact of Global Fisheries and Global Warming on Marine Ecosystems and Food Security Daniel Pauly...

Post on 14-Jan-2016

214 views 0 download

Tags:

Transcript of Impact of Global Fisheries and Global Warming on Marine Ecosystems and Food Security Daniel Pauly...

Impact of Global Fisheries and Global Warmingon Marine Ecosystems and Food Security

Daniel PaulySea Around Us ProjectFisheries Centre, UBC

A Future for Fisheries?Toward Effective Strategies for Sustainability

KU Leuven, February 5, 2008

This graph, illustrating a Canadian tragedy, leads to several questions. One of them is: how typical is the story of the Northern cod fishery? Can we generalize?

And it goes on!

We can define…

Now let’s apply these definitions to the global FAO catch statistics…

Fully exploited

Developing

Underdeveloped… Over-exploitedCrashed

Sto

cks

(%)

Our first generalization is bleak indeed.

Developing

Fully exploited

Over-exploited

Crashed

Underdeveloped

Also, it is tempting to project these trends…

Sto

cks

(%)

2048 ?

Our next generalization relies on maps. We don’t really know where most fisheries operate, but when we have global FAO catch statistics, we can infer the distribution of fisheries (and of catches) by using a filtering approach…

Taxon (what) FAO Area (where)Country (who)

Taxon Distribution Database

Spatial ReferenceDatabase

Fishing AccessDatabase

Common Spatial Cells?

Assign catch rates to cells

YES

Over 99.9% of the global marine catch can be assigned to ½ degree spatial cells, and we are steadily improving the underlying databases …

No; improve underlying databases

This is the first map we got. It was not very exciting, except for the anomalies (red)….

0

We had no problem with Peruvian and Chilean waters being extremely productive. But China?

Thus, global fisheries landings, despite (or because of ) increasing effort, have been declining since the late 1980s, a fact long hidden by over-reporting from China:

Watson and Pauly (Nature), 2001.

40

45

50

55

60

65

70

75

80

85

90

1970 1975 1980 1985 1990 1995 2000

Glo

ba

l c

atc

h (

t ·1

06 )

Uncorrected

Corrected

Corrected, no anchoveta

El Niño event

(a)El Niño events

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000

Year

Wit

hd

raw

als

(mil

lion

t)

A

E

D

C

B

In fact, the decline is even stronger if one considers discarded fish. This was generally overlooked when FAO’s last estimate of discards (dot E; 7-8 million t) was released.

Zeller and Pauly (Fish & Fisheries, 2005)

Peruvian anchoveta

Other landed fishes and invertebrates

Discarded fishes and invertebrates

Back to basics: ecosystem fluxes move up ‘trophic pyramids’…

Tro

ph

ic le

vel

Phytoplankton

Top predators

Prey fish

Zooplankton

. . ... .. .. .. .. .. .. .. *.*. .. .... . ..*.*.*.*.*.*.

*.*. *.*.*.*.*.*.

. . . . . . 10% 10%

10% 10%

10% 10%

*.*.

4

3

2

1

and each species tends to have its own trophic level…

3.2

3.3

3.4

3.5

3.6

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

Year

Tro

ph

ic le

vel

Global coastal

North Atlantic

2000

Another generalization emerges when we compute the mean trophic level of world catches. This shows a global decline…

Pauly et al. (Science, 1998)

In fact, ‘fishing down’ is so widespread that the Convention on Biological Diversity (CBD) now uses mean trophic levels as an index of biodiversity, the “Marine Trophic Index”.

Trophic level change (1950-2000)

>1 0.5 to 1.0 no change /no data

And this means that ‘fishing down’ is

everywhere

We can see from space how trawlers stir up sediment…

Photo courtesy of Dr. Kyle van Houten (Duke University)

Here: shrimp trawlers off the Texas Coast, Gulf of Mexico

The Benguela Current may be the first system where jellyfish became dominant, but it won’t be the last…

Grenadier, snoek,seabream

Hake

HakeHake

FlatfishPollock

Flounder

Cod

Cod, saithe, plaice, redfish, haddockDemeral Fishes

Consumers in the ‘North’ have not noticed this, nor similar trends: while most seafood is traded between the EU, the USA and Northeast Asia, the ‘South’ has so far met the shortfall in the ‘North’….

We’ll need to get out of the vicious circle of contemporary fisheries management.

We can do things right, as illustrated by Georges Bank haddock

200-MileLimit

EmergencyClosure

Now turning to subsidies

MEY

MSY Bionomic equilibrium (BE)

Total cost of fishing effort (TC)

Total Revenue (TR)

Fishing effort (E)

TR & TC ( $)

E1 E2 E3

Max. rent

TC1

TC2

BE2

BE1

TR

TR& TC ($)

E3 E4 Fishing effort (E)

Cost-reducing subsidies

Let’s assume a Gordon-Schaefer bioeconomic model How subsidies induce overfishing

Non fuel

Fuel

0

5

10

15

20

25

30

35

World Bank This study

Subs

idy

amou

nts

in b

illion

USD

Global subsidy comparisons

Sumaila and Pauly (2006)

Subsidies come in different flavors…

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Asia

Europe

Lat. America & Caribbean

North America

Sub Saharan Africa

North Africa & Mediterranean

Oceania

Subsidy amount (billion USD)

Good subsidies Bad subsidies Ugly subsidies

Sumaila and Pauly (2006)

Marine Protected Areas are part of the solution. There are many, but most of them are tiny…

0

500

1000

1500

2000

2500

3000

3500

4000

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year

Cu

mu

lati

ve A

rea

('00

0 sq

km

)

International sites

National sites

1% of world ocean area (growth rate ~ 5% year-1)

Wood et al. (in press)

As a result, the growth of the global MPA network is so slow that we will miss all the targets…

Wood et al. (in press)

0

5

10

15

20

25

30

35

40

1970 1975 1980 1985 1990 1995 2000

0

5

10

15

20

25

30

35

40

1970 1975 1980 1985 1990 1995 2000

The worldwide aquaculture production - by countries (10^6 tonnes)

China

However, all the optimistic projections forget that aquaculture is mainly a Chinese enterprise (2/3 of production), devoted mainly to freshwater fishes…

Aquaculture has grown to a production of 40 millions t in the last decades , and some believe it is solution to our fish supply problem…

Freshw. fishes

But a major trend in aquaculture is what may be called ‘farming up the food web’, which occurs in major producing countries …

Note absence of an increasing trend for the USA, due to a high production of (low trophic level) catfishes(Pauly et al. 2001. Conservation Biology in Practice 2(4): 25).

The farms’ impacts on coastal ecosystems are, besides pollution, that they tend to increase the ‘fishing down’ effects…

Jacquet, J. and D. Pauly. 2007. The rise of consumer awareness campaigns in an era of collapsing fisheries. Mar. Pol. 31: 315-321.

One approach much talked about are market-based mechanisms, see e.g., www.seafoodguide.org. Another approach is illustrated here…

Pho

to (

?) b

y Je

nnif

er J

acqu

et

Source: Watson, Alder & Pauly, 2006

However, over 1/3 of the world’s fish catch is currently wasted, i.e., turned into animal feeds…

36%

…which is a tremendous waste of good food

Meanwhile, thing are heating up…

Al Gore & IPCC: Nobel Prize 2007

………..

Probability of occurrence by water temperature

Temperature-abundance profile

Small yellow croaker (Larimichthys polyactis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

0.00

0.05

0.10

0.15

0.20

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Temperature (degree C)

Pro

ba

bili

ty o

f o

cc

urr

en

ce

Small yellow croakerYear 0

Year 30

Small yellow croaker

Year 0

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 2

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 4

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 6

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 8

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 10

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 12

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 14

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 16

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 18

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 20

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 22

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 24

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 26

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 28

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Year 30

Barndoor skate(Dipturus laevis)

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Year 0

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 2

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 4

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 6

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 8

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 10

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 12

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 14

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 16

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 18

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 20

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 22

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 24

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 26

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 28

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Year 28

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Greenland shark(Somniosus microcephalus)

Original (static) distribution

Relative abundance

0

0 - 0.00015

> 0.0015 - 0.0038

> 0.0038 - 0.0062

> 0.0062 - 0.0095

> 0.0095 - 0.012

> 0.012 - 0.016

> 0.016 - 0.023

> 0.023 - 0.030

> 0.030 - 0.040

> 0.040

Low

High

Relative abundance

Distribution after 30 years

Antarctic toothfish (Dissostichus mawsoni)

…as an example of a species predicted to go extinct

Acknowledgements… • Thanks to the Pew Charitable Trusts,

Philadelphia;

• Fisheries Centre, University of British Columbia;

• Members of the Sea Around Us project,and many others...

visit us at www.seaaroundus.org