Hydrogen Absorbing Materials YOSHIDA Lab. M1 Ryusuke Tominaga.

Post on 02-Jan-2016

219 views 2 download

Transcript of Hydrogen Absorbing Materials YOSHIDA Lab. M1 Ryusuke Tominaga.

Hydrogen Absorbing Materials    

YOSHIDA Lab.   M1

Ryusuke Tominaga

The purpose of research

The purpose of my research is through creating high-quality Hydrogen Absorbing Materials , to encourage the prevalence of fuel-cell electric vehicle , and thereby to contribute to the energy and environment concern .

fuel-cell electric vehicle「PUYO」

出典: http://www.nikkei.co.jp/news/main/im20071009AS1D0904609102007.html

(( ->) ->) environment concern

The efficiency of fuel-cell electric vehicle is2 times more efficient than that of normal vehicle

(->energy concern)(->energy concern)

No emissions of carbon dioxide

The structure of Fuel cell

What is the Hydrogen Absorbing Materials ?

  The Hydrogen Absorbing Materials are the materials that can absorb and emit hydrogen.

The discover : the   Philips Eindhoven institution

( Netherlands)                                               

The condition that must be satisfied to be a practical Hydrogen Absorbing system

Can the system contain enough fuel for about 480km drive ranges at one time refilling ?

Can it release hydrogen at rates fast enough to provide the power and acceleration that drier expect on a freeway ?

Can it fill the fuel fast enough at reasonable price ?

Specific material ZnO

Doping H into T0

Formation energy   Ef=[E(ZnO:Hx)-{E(ZnO)+0.5*x*E(H2)}]/x

(zincblende)

BC: Bond-centeredAB: Antibonding T: Tetrahedral H: Hexagonal

Condition for calculation

Machikaneyama2002 http://sham.phys.sci.osaka-u.ac.jp/~kkr/

Korringa-Kohn-Rostoker (KKR) Green’s function method

Coherent potential approximation (CPA) Local density approximation (LDA) No lattice relaxationedelt=0.001 Ry,

ZnO zincblende structure Experimental lattice constants are used.

ZnOThe formation energy of H

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

hydrogen concentration

Ener

gyeV

)(

同時ドーピング法 ドープするドナーとアクセプター濃度にアン

バランつけながら、同時にドープする方法。

a)溶解度増大効果

b) キャリア活性率増大効果 c)易動度増大効果

Specific material ZnO

Doping trantion metal into Zn-site Doping H into T0

Formation energy   Ef=[(E((Zn,X)O:Hx)-{E((Zn,X)O)+0.5*x*E(H2)}]/x

(zincblende)

BC: Bond-centeredAB: Antibonding T: Tetrahedral H: Hexagonal

Condition for calculation

Machikaneyama2002 http://sham.phys.sci.osaka-u.ac.jp/~kkr/

Korringa-Kohn-Rostoker (KKR) Green’s function method

Coherent potential approximation (CPA) Local density approximation (LDA) No lattice relaxationedelt=0.001 Ry,

ZnO zincblende structure Experimental lattice constants are used.

The formationenergyof H

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

hydrogen concentration

ener

gyev

)(

X=22

X=23

X=24X=25

X=26

X=27

X=28X=29

no- dop

What is the cause ? LDA error ? Can ZnO be Hydrogen Absorbing Materi

als ?    

LDA+SIC

‘Pseudopotential-like self-interaction correction scheme’ by Filippetti and Spaldin. We implement the scheme with

KKR-CPA code (MACHIKANEYAMA2002).

Filippetti and Spaldin, PRB 67, 125109 (2003).Akai, PRL 81, 3002 (1998).

Orbital independent potential

ZnVO

Ishida et al., Pysica B 351, 204 (2004).

LDA

SIC

Main peak at EB = 1.8 eV

Condition for calculation

Machikaneyama2002 http://sham.phys.sci.osaka-u.ac.jp/~kkr/

Korringa-Kohn-Rostoker (KKR) Green’s function method

Coherent potential approximation (CPA) ( Self-interaction corrected LDA (SIC-LDA) ) No lattice relaxationedelt=0.001 Ry,

ZnO zincblende structure Experimental lattice constants are used.

Formation energy of H

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

hydrogen concentration

ener

gy(e

V) SicLDA

Other material MgH2

Sumarry The co-doping method is efficient to Zn

O. But the effect is limited . Using SIC-LDA (Self-interaction corrected LDA) Other material ex) MgH2