High-Temperature Coating for Solar-Thermal Energy Conversion

Post on 19-Feb-2022

7 views 0 download

Transcript of High-Temperature Coating for Solar-Thermal Energy Conversion

High-Temperature Coating for Solar-Thermal Energy Conversion

Renkun Chen

Associate Professor Department of Mechanical and Aerospace Engineering

Materials Science & Engineering Program University of California, San Diego

Collaborators: Prof. Zhaowei Liu (ECE, UCSD), Prof. Sungho Jin (MatSci, UCSD) Students: Sunmi Shin, Lizzie Caldwell, Conor Riley, Jaeyun Moon (UNLV),

Taekyoung Kim (A123), Bryan vanSaders (Michigan)

Sponsors:

1  

Concentra)ng  Solar  Power  (CSP)  

2  

3  DOE  Report:  “2014:  The  year  of  CSP”  

Concentra)ng  Solar  Power  (CSP)  

4  Source:  “Technology  Roadmap:  Solar  Thermal  Electricity”,  IEA  

CSP:  Cumula)ve  Installed  Capacity  

5  Source:  “Technology  Roadmap:  Solar  Thermal  Electricity”,  IEA  

CSP:  Thermal  Energy  Storage  

6  DOE  Sunshot  IniIaIves  

Target  LCOE  in  Y2020:  6¢/kWh  (cf.  21¢/kWh  in  Y2010,  13¢/kWh  in  Y2013)  

DOE  Sunshot  Ini)a)ves  on  CSP  

7  There  is  an  op)mal  working  temperature  for  any  given  concentra)on  ra)o  

The  Quest  for  High  Temperature  

Source:  “Technology  Roadmap:  Solar  Thermal  Electricity”,  IEA  

8  

Solar  receiver  requirements  to  achieve  the  target  LCOE:          -­‐-­‐  HTF  exit  temperature  ~720oC,  Thermal  eff.  ≥  90%,  Life)me  ≥  10k  cycles  

DOE  Sunshot  FOA  “APOLLO”  

Next-­‐Genera)on  CSP  Systems  

Ideal  solar  selec)ve  coa)ng  (SSC)  

!"# =1− ! ! !(!)!"!

! − 1! 1− !(!) !(!,!)!"!

!

!(!)!"!!

!!!!!!

Figure  of  Merit  (FOM)  is  determined  by  absorptance  in  the  solar  spectrum  and  IR  emiSance    

•  FOM  depends  on  solar  concentraIon  raIo  C  and  absorber  surface  temperature  T  •  Assuming  C=1000  and  T=750oC  for  Solar  Towers  •  For  high  C  (>1000),  the  infrared  emission  loss  is  relaIvely  less  important.    

9  

R-­‐  Calculated  reflectance  spectrum  I-­‐  Total  solar  irradiance,  as  reported  in  ASTM  G173  C-­‐  ConcentraIon  factor  (raIo  of  absorber  area  to  mirror  collecIon  area)  B-­‐  Planckian  black  body  emission  

J.  Moon,  D.  Lu,  B.  VanSaders,  T.K.  Kim,  S.D.  Kong,  S.  Jin,  R.  Chen,  Z.  Liu,  Nano  Energy  8  (2014)  238-­‐246.    

Solar  Selec)ve  Coa)ng  

1.  High  Figure  of  Merit  (Thermal  Efficiency):            >=  0.90  (90%  efficiency)    2.  High  Temperature  Stability  and  Reliability:          at  750  oC  under  air  environment            -­‐  Oxida)on  resistance            -­‐  Crystal  structure  stability  without  decomposi)on            -­‐  No  delamina)on  of  SSC  layer  from  metal  tube  substrate    3.  Low-­‐cost  Fabrica)on  

-­‐  DOE  SunShot  Project’s  Milestone  (Y2012-­‐2015)  

Requirements  for  Next-­‐Gen  Solar  Receivers  

[1] J. Sol-Gel Sci. Tech. 20, 61–83, 2001, [2] LBNL CoolColors Lab.  

Cu1.285Fe0.43Mn1.285O4  Film  on  Al  Substrate[1]  Copper  Chromite  [2]  

a:  without  SiO2  binder;  b,  c:  with  SiO2  binder  

Why spinel oxides? •  Suitable  op)cal  proper)es  (also  adjustable  

with  atomic  composiIon)  •  Cheap,  abundant  •  Already  oxidized  (more  stable  at  high  T)  •  Scalable  synthesis    (e.g.  hydrothermal  and  sol-­‐

gel  synthesis)  

Spinel  Oxides  as  SSC  Materials  

Hydrothermal  Synthesis:  Cu-­‐Contained  Spinel  NanoPar)cles  

CuCl2 2H2O 1M Solution(aq) CrCl3 6H2O 1M Soution(aq)

Mixing for 5h at RT

Cu-Cr Hydroxide

Co-Precipitation with 10M NaOH Solution(aq)

Mixing for 2h at RT

Hydrothermal Synthesis at 200oC / 20h

CuCl2 2H2O 1M Solution(aq) FeCl3 6H2O 1M Solution(aq) MnCl2 4H2O 1M Solution(aq)

Mixing for 5h at RT

Cu-Fe-Mn Hydroxide

Co-Precipitation with 10M NaOH Solution(aq)

Mixing for 2h at RT

Hydrothermal Synthesis at 200oC / 20h

Copper Chromites Cu-Fe-Mn Oxides

Centrifuging & Washing

Spinel Metal Oxide NPs

Freeze-Drying

Post-Treatment

Crystallization at 550oC/5h/Air

12  

Scalable  Coa)ng  Process  

Cu/Cr=1/2  

Cu/Cr=1/1  

Crystalliza)on:  550oC/5h/Air  

Copper  Chromites  NPs    Synthesized  with  Different  Condi)ons  

APS<  50  nm  

APS<  50  nm   0.3-­‐1µm  

200-­‐600  nm  

Crystalliza)on:  750oC/2h/Air  

-­‐-­‐  Copper  chromites  synthesized  with  2  different  atomic  composiIons.  -­‐-­‐  CrystallizaIon  condiIon  as  a  final  step  of  synthesis  to  be  opImized.  

Atomic  Comp.  

14  

XRD  and  Thermal  Stability  of  CuCr2O4  NPs  

*  O.  CroSaz,  F.  Kubel,  H.  Schmid,  J.  Mater.  Chem.  7  (1997)  143-­‐146.  (PDF  01-­‐079-­‐5380)  

-­‐  Crystal  informaIon:  Tetragonal  System  Lajce:  Body-­‐centered  Cell  Parameters:  a  6.030,  c  7.782  Main  plane:  (211)  at  2θ=35.19  o  

-­‐  CuCr2O4  can  be  confirmed.    -­‐  Thermally  stable  at  750oC:  a.  Aler  thermal  test,  new  phase  was  not  seen.    b.  ParIcle  size  grown  by  sintering  effect  at  high  temperature.  

15  

Crystalliza)on  Condi)on  Op)miza)on  for  CuFeMnO4  NPs  

(a)  Crystallized  at  550oC/5h/air  

APS  100-­‐200  nm   APS  100-­‐400  nm  

(b)  Crystallized  at  750oC/2h/air  

-­‐-­‐  Cu-­‐Fe-­‐Mn  Oxide  NPs  synthesized  with  Cu/Fe/Mn=1/1/1  (a/a).  -­‐-­‐  OpImized  crystallizaIon  condiIon:  550  oC  /  5h  /air,  to  obtain  smaller  NPs.  

16  

XRD  and  Thermal  Stability  of  CuFeMnO4  NPs  

*  PDF  00-­‐020-­‐0358.  

-­‐  CuFeMnO4  can  be  confirmed.    -­‐  Thermally  stable  at  750oC:  a.  Aler  thermal  test,  new  phase  was  not  seen.    b.  ParIcle  size  grown  by  sintering  effect  at  high  temperature.  

17  

18  

First  we  tried  mixing  both  compounds….  

….  then  we  layered  both  compounds.  

Max  FOM=  0.894  

Max  FOM=  0.902  

SSC  Layers  with  Mixtures  of  CuCr2O4  and  CuFeMnO4  

UCSD’s  Black  Oxide  Coa)ng  -- Typical absorptivity of 97 – 98% in the visible to NIR regime. [For power tower type applications with concentration factor of ~1,000, the absorptivity dominates the solar to heat Figure-of-Merit (FOM), with the blackbody emissivity effect being negligible.]

-- CFM/CuCr: highest FOM (0.902) -- Pyromark 2500 : FOM of 0.889

250 500 750 1000 1250 1500 1750 2000

0.03

0.06

0.09

0.12

0.15

 

 

Reflectan

ce

Waveleng th  (nm)

 C F M  dens e  la yer  (C F M-­‐H 1)  :  F  0 .8911  C u2C r2O 5  layer  (C C 1)  :  F  0 .883  C F M(porous  top)/C u2C r2O 5  (C F MH1-­‐C u1)  :  F  0 .903  C F M(porous  top)/C o3O 4  (C F MH1-­‐C o1)  :  F  0 .8904  C F M(porous  top)/C F M  (C F MH1-­‐C F MH1)  :  F  0 .8931  P yro  la yer  (P 1)  :  F  0 .8896

Pyromark

UCSD Black Oxide Porous  CuFeMnO4  top  layer&  dense  CuCr2O4  borom  layer;  FOM:  0.902  

Reflectance vs wavelength for various SSC layer materials

19  

20  

!"# =1− ! ! !(!)!"!

! − 1! 1− !(!) !(!,!)!"!

!

!(!)!"!!

!!!!!!

DOE  Report:  “2014:  The  year  of  CSP”  

Solar-­‐Thermoelectrics  Trough  Collectors  

G.  Chen  et  al.,  Nature  Mater.  (2011)  

For  low  C  (e.g.,  ~100  for  troughs),  the  infrared  emission  loss  is  important  è  Need  to  improve  the  selecIvity    

High-­‐Temperature  Spectrally  Selec)ve  Coa)ng  

21  

               Black  Oxide  

Transparent  Conduc)ve  Oxide  (TCO)  

Vis/NIR  (<  1-­‐2  um)  

Tran

smiran

ce  

Wavelength  

IR  (>  1-­‐2  um)  

•  We  use  Al-­‐doped  ZnO  (AZO)  as  the  TCO  •  Low  cost  (compared  to  ITO)  •  Adjustable  cutoff  wavelength  •  Scalable  synthesis  

Black  Oxide  +  TCO  for  High  Selec)vity  

[1]Kim,  J.;  Naik,  G.  V.;  Emani,  N.  K.;  Guler,  U.;  Boltasseva,  A.  IEEE  J.  Sel.  Topics  Quantum  Electron.  2013,  19.    [2]Jia  et.al  Thin  Solid  Films  559  (2014)  69–77    [3]Riley  et.  al.  Small,  accepted  

Deposi)on  Method    

µ  (cm2/Vs)    (at  n=~1x1021cm-­‐3)  

ε''      

Scalability    

Conformality    

Pulsed  Laser  DeposiIon[1]   47   0.5   Poor   Fair  SpuSer[2]   8   -­‐   Good   Good  

Atomic  Layer  DeposiIon[3]   9.8   0.47   Good   Excellent  

22  

•  Self-­‐limiIng  surface  reacIons    •  “Monolayers”  are  deposited  by  diethly  zinc,  

water  and  trimethylaluminum  pulses  •  Chemical  composiIon  controlled  by  the  raIo  of  

chemical  pulses  •  Thickness  controlled  on  the  angstrom  scale  •  Extremely  high  conformality  

   

Atomic  Layer  Deposi)on  (ALD)  of  AZO  

AZO  (1um)  Axer  Annealing    AZO  (1um)    Glass  

Selec)ve  Transmission  of  AZO  

•  We  have  developed  solar  absorbing  coaIng  based  on  nanostructured  black  oxides  –  Thermal  efficiency  (FOM)  >  90%  –  Stable  at  high  temperature  –  Scalable  synthesis  and  coaIng  process  –  Suitable  for  next-­‐generaIon  solar  towers.  

•  On-­‐field  evaluaIon  of  the  black  oxide  coaIng  •  Black  oxide  +  TCO  for  high-­‐temperature  selecIve  coaIng  •  IntegraIon  into  high-­‐temperature  solar-­‐thermal  systems    

 24  

Summary  and  Future  Direc)ons